Up | (ex)′ = ex,(ax)′ = (logea) ax | 作成: 2011-04-16 更新: 2017-10-26 |
これより f(x+h) − f(x) = f(x) × f(h) − f(x) = ( f(h) − 1) × f(x) = ( f(h) − f(0) ) × f(x) よって
f が exp : x├─→ ex の場合
よって,f′(x) = f′(0) f(x) = f(x)。 即ち,(ex)′ = ex. fが関数 : x├─→ ax の場合
ax = (ep)x = epx より, ( f(h) − f(0) ) / h = (eph − 1 ) / h = p × ( (eph − e0 ) / (ph) ) よって,f′(0) = p = logea f′(x) = f′(0) f(x) より,(ax)′ = (loge a) ax |