Up \( \partial_1 \) の表現行列 作成: 2023-10-12
更新: 2023-10-12


    \( C_1 \) の基底を,つぎのように定めた:

    \( C_0 \) の基底は,\( \{ v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9 \} \) をとる。

    各 \( e_i \) のバウンダリは,
    \[ \partial_1 e_1 = v_2 - v_1 \\ \partial_1 e_2 = v_3 - v_2 \\ \partial_1 e_3 = v_1 - v_3 \\ \ \\ \partial_1 e_4 = v_4 - v_1 \\ \partial_1 e_5 = v_8 - v_2 \\ \partial_1 e_6 = v_9 - v_3 \\ \ \\ \partial_1 e_7 = v_1 - v_8 \\ \partial_1 e_8 = v_2 - v_9 \\ \partial_1 e_9 = v_3 - v_4 \\ \] \[ \partial_1 e_{10} = v_8 - v_4 \\ \partial_1 e_{11} = v_9 - v_8 \\ \partial_1 e_{12} = v_4 - v_9 \\ \ \\ \partial_1 e_{13} = v_5 - v_4 \\ \partial_1 e_{14} = v_6 - v_8 \\ \partial_1 e_{15} = v_7 - v_9 \\ \ \\ \partial_1 e_{16} = v_4 - v_6 \\ \partial_1 e_{17} = v_8 - v_7 \\ \partial_1 e_{18} = v_9 - v_5 \\ \] \[ \partial_1 e_{19} = v_6 - v_5 \\ \partial_1 e_{20} = v_7 - v_6 \\ \partial_1 e_{21} = v_5 - v_7 \\ \ \\ \partial_1 e_{22} = v_1 - v_5 \\ \partial_1 e_{23} = v_2 - v_6 \\ \partial_1 e_{24} = v_3 - v_7 \\ \ \\ \partial_1 e_{25} = v_5 - v_2 \\ \partial_1 e_{26} = v_6 - v_3 \\ \partial_1 e_{27} = v_7 - v_1 ] \]

    よって,基底 \( \{ e_i \}, \{ v_j \} \) に対する \( \partial_1 : C_1 \rightarrow C_0 \) の表現行列は,


    以下,基底 \( \{ e_i \} \) の変換によってこの行列の階数を減らす作業をする。

    行列の操作において考えることは,どの \( e_i \) を変更せずに残すかである。

    図に見て取れるように,各有向辺のバウンダリ (両端の頂点) は,つぎの8個の有向辺がつくるチェインのバウンダリに表現できる:
      \[ e_1, e_2, e_4, e_5, e_6, e_{13}, e_{14}, e_{15} \]
    これらを,「変更せずに残す \( e_i \) 」とする。



    \( e'_8 = e_8 + e_6 \)
    \( e'_{11} = e_{11} - e_6 \)
    \( e'_{12} = e_{12} + e_6\)
    \( e'_{18} = e_{18} - e_6 \)

    \( e'_7 = e_7 + e_5 \)
    \( e'_{10} = e_{10} - e_5 \)
    \( e''_{11} = e'_{11} + e_5 \)
    \( e'_{17} = e_{17} - e_5 \)


    \( e''_{17} = e'_{17} + e_{27} \)
    \( e'_{20} = e_{20} - e_{27} \)
    \( e'_{21} = e_{21} + e_{27} \)
    \( e'_{24} = e_{24} + e_{27} \)

    \( e'_{16} = e_{16} + e_{26} \)
    \( e'_{19} = e_{19} - e_{26} \)
    \( e''_{20} = e'_{20} + e_{26} \)
    \( e'_{23} = e_{23} + e_{26} \)


    \( e''_{18} = e'_{18} - e_{22} \)
    \( e'_{19} = e_{19} - e_{22} \)
    \( e'_{21} = e_{21} + e_{22} \)
    \( e'_{25} = e_{25} + e_{22} \)

    \( e'_{9} = e_{9} + e_{4} \)
    \( e''_{10} = e'_{10} + e_{4} \)
    \( e''_{12} = e'_{12} - e_{4} \)
    \( e'_{16} = e_{16} - e_{4} \)



    \( e''_{7} = e'_{7} + e_{1} \)
    \( e'''_{10} = e''_{10} - e_{1} \)
    \( e'''_{17} = e''_{17} - e_{1} \)
    \( e''_{25} = e'_{25} + e_{1} \)

    \( e''_{8} = e'_{8} + e_{2} \)
    \( e'''_{11} = e''_{11} - e_{2} \)
    \( e''_{23} = e'_{23} + e_{2} \)

    \( e''_{9} = e'_{9} + e_{3} \)
    \( e'''_{12} = e''_{12} - e_{3} \)
    \( e'''_{16} = e''_{16} - e_{3} \)
    \( e'''_{18} = e''_{18} + e_{3} \)
    \( e'''_{19} = e''_{19} + e_{3} \)
    \( e'''_{20} = e''_{20} - e_{3} \)
    \( e''_{24} = e'_{24} + e_{3} \)



    \( e'_{3} = e_{3} + ( e_{1} + e_{2} ) \)
    \( e'_{22} = e_{22} + ( e_{4} + e_{13} ) \)
    \( e'_{26} = e_{26} + ( e_{2} - e_{5} - e_{14} ) \)
    \( e'_{27} = e_{27} - ( e_{1} + e_{2} + e_{6} + e_{15} ) \)


    この行列は,つぎのことを示している:
    • 写像 \( \partial_1 \) では,27次元が8次元になり,19次元が潰れる。
      即ち,\( Ker( \partial_1 ) \) が 19次元,\( Ker( \partial_1 ) \) の補空間が 8次元。

    実際,つぎのチェインが,補空間の基底を成す: \[ e_1,\ e_2,\ e_4,\ e_5,\ e_6,\ e_{13},\ e_{14},\ e_{15}, \\ \] そして,つぎのサイクルが,\( Ker( \partial_1 ) \) の基底を成す: \[ e'_{3} = e_{3} + ( e_{1} + e_{2} ) = e_{1} + e_{2} + e_{3} \]
    \[ e''_{7} = e'_{7} + e_{1} = ( e_7 + e_5 ) + e_{1} = e_{1} + e_5 + e_7 \]
    \[ e''_{8} = e'_{8} + e_{2} = ( e_8 + e_6 ) + e_{2} = e_{2} + e_6 + e_8 \]
    \[ e''_{9} = e'_{9} + e_{3} = ( e_{9} + e_{4} ) + e_{3} = e_{3} + e_{4} + e_{9} \]
    \[ e'''_{10} = e''_{10} - e_{1} = ( e'_{10} + e_{4} ) - e_{1} = ( ( e_{10} - e_5 ) + e_{4} ) - e_{1} \\ = e_{4} + e_{10} - e_5 - e_{1} \]
    \[ e'''_{11} = e''_{11} - e_{2} = ( e'_{11} + e_5 ) - e_{2} = ( ( e_{11} - e_6 ) + e_5 ) - e_{2} \\ = e_5 + e_{11} - e_6 - e_{2} \]
    \[ e'''_{12} = e''_{12} - e_{3} = ( e'_{12} - e_{4} ) - e_{3} = ( ( e_{12} + e_6 ) - e_{4} ) - e_{3} \\ = e_6 + e_{12} - e_{4} - e_{3} \]
    \[ e'''_{16} = e''_{16} - e_{3} = ( e'_{16} - e_{4} ) - e_{3} = ( ( e_{16} + e_{26} ) - e_{4} ) - e_{3} \\ = - e_{3} + e_{26} + e_{16} - e_{4} \]
    \[ e'''_{17} = e''_{17} - e_{1} = ( e'_{17} + e_{27} ) - e_{1} = ( ( e_{17} - e_{5} ) + e_{27} - e_{1} \\ = e_{27} + e_{17} - e_{5} - e_{1} \]
    \[ e'''_{18} = e''_{18} + e_{3} = ( e'_{18} - e_{22} ) + e_{3} = ( ( e_{18} - e_6 ) - e_{22} ) + e_{3} \\ = e_{3} - e_{22} + e_{18} - e_6 \]
    \[ e'''_{19} = e''_{19} + e_{3} = ( e'_{19} - e_{22} ) + e_{3} = ( ( e_{19} - e_{26} ) - e_{22} ) + e_{3} \\ = - e_{22} + e_{19} - e_{26} + e_{3} \]
    \[ e'''_{20} = e''_{20} - e_{3} = ( e'_{20} + e_{26} ) - e_{3} = ( ( e_{20} - e_{27} ) + e_{26} ) - e_{3} \\ = e_{26} + e_{20} - e_{27} - e_{3} \]
    \[ e''_{21} = e'_{21} + e_{22} = ( e_{21} + e_{27} ) + e_{22} = e_{27} + e_{21} + e_{22} \]
    \[ e'_{22} = e_{22} + ( e_{4} + e_{13} ) = e_{4} + e_{13} + e_{22} \]
    \[ e''_{23} = e'_{23} + e_{26} = ( e_{23} + e_{2} ) + e_{26} = e_{23} + e_{26} + e_{2} \]
    \[ e''_{24} = e'_{24} + e_{3} = ( e_{24} + e_{27} ) + e_{3} = e_{27} + e_{24} + e_{3} \]
    \[ e''_{25} = e'_{25} + e_{1} = ( e_{25} + e_{22} ) + e_{1} = e_{25} + e_{22} + e_{1} \]
    \[ e'_{26} = e_{26} + ( e_{2} - e_{5} - e_{14} ) = e_{26} - e_{14} - e_{5} + e_{2} \]
    \[ e'_{27} = e_{27} - ( e_{1} + e_{2} + e_{6} + e_{15} ) = e_{27} - e_{15} - e_{6} - e_{2} - e_{1} \]