Up テンソル積の基底 作成: 2018-02-22
更新: 2018-02-23


    線型空間 \(U,\, V\) のテンソル積 \(U \otimes V\) を考える。

    \(U,\, V\) の基底
      \[ \{ {\bf u}_1, \cdots, {\bf u}_m \} \\ \{ {\bf v}_1, \cdots, {\bf v}_n \} \]
    に対するつぎの集合は,\(U \otimes V\) の基底になる:
      \[ \{ {\bf u}_i \otimes {\bf v}_j \,|\, i = 1, \cdots, m; \, j = 1,\cdots, n \} \]


    以下,これの証明:

    (1) \(U \otimes V\) の元が,\( {\bf u}_i \otimes {\bf v}_j \) の線型結合で書けること:
      \(U \otimes V\) の元は,\( ({\bf x},\, {\bf y}) \in U \times V\) に対する \( {\bf x} \otimes {\bf y} \) であり,
        \[ {\bf x} = \sum_i x^i \, {\bf u}_i \\ {\bf y} = \sum_j y^j \, {\bf v}_j \]
      とするとき,
        \[ \begin{align*} {\bf x} \otimes {\bf y} &= \left( \sum_i x^i \, {\bf u}_i \right) \otimes \left( \sum_j y^j \, {\bf v}_j \right) \\&= \sum_{i, j} ( x^i y^j )\, ( {\bf u}_i \otimes {\bf v}_j ) \end{align*} \]

    (2) \( {\bf u}_i \otimes {\bf v}_j \) が線型独立であること:
      先ず,テンソル積の定義から,
        \[ {\bf x} \otimes {\bf y} = {\bf x'} \otimes {\bf y'} \ \Longrightarrow\ (\ \xi\, {\bf x} = {\bf x'} \Longrightarrow \xi\, {\bf y'} = {\bf y} \ ) \]
      よって,
        \[ {\bf x} \otimes {\bf v}_j = {\bf x'} \otimes {\bf v}_j \ \Longrightarrow\ {\bf x} = {\bf x'} \]
      特に,
        \[ {\bf x} \otimes {\bf v}_j = {\bf 0} \ \Longrightarrow\ {\bf x} \otimes {\bf v}_j = {\bf 0} \otimes {\bf v}_j \ \Longrightarrow\ {\bf x} = {\bf 0} \]
      これより,
        \[ \sum_j {\bf x}_j \otimes {\bf v}_j = {\bf 0} \\ \Longrightarrow\ {\bf x}_p \otimes {\bf v}_p = \sum_{j \ne p} {\bf x}_j \otimes {\bf v}_j \\ \Longrightarrow\ {\bf x}_p \otimes {\bf v}_p = 0 \\ \Longrightarrow\ {\bf x}_p = 0 \]
      最後に,
        \[ \sum_{i, j} \xi^{ij} ( {\bf u}_i \otimes {\bf v}_j ) = {\bf 0} \\ \Longrightarrow\ \sum_j \left( \sum_i \xi^{ij} {\bf u}_i \right) \otimes {\bf v}_j = {\bf 0} \\ \Longrightarrow\ \sum_i \xi^{ij} {\bf u}_i = {\bf 0} \quad ( j = 1, \cdots, n ) \\ \Longrightarrow\ \left(\ \xi^{ij} = 0 \quad ( i = 1, \cdots, n ) \ \right) \quad ( j = 1, \cdots, n ) \\ \Longrightarrow\ \xi^{ij} = 0 \quad ( i, j = 1, \cdots, n ) \]