Up デカルト座標の変換 作成: 2018-03-09
更新: 2018-03-09


    地図のデカルト座標を,\(X^i\) 座標と称する。
    この基底を, \[ {\bf E} = \{ {\bf E}_1,\, \cdots,\, {\bf E}_n \} \] とする。
    曲線座標を,\(x^i\) 座標と呼ぶ。
    この基底──局所直線基底──を, \[ {\bf e} = \{ {\bf e}_1,\, \cdots,\, {\bf e}_n \} \] とする

    つぎを,この2つの基底の変換式とする:
      \[ ( {\bf e}_1\, \cdots\, {\bf e}_n ) = ( {\bf E}_1\, \cdots\, {\bf E}_n ) \left( \begin{array}{ccc} \kappa^1_1 & \cdots & \kappa^1_n \\ & \cdots & \\ \kappa^n_1 & \cdots & \kappa^n_n \\ \end{array} \right) \]
    行列 \( (\kappa^i_j) \) は,つぎのように座標の変換行列になる:
      \[ \left( \begin{array}{c} {X}^1 \\ \vdots \\ {X}^n \\ \end{array} \right) = \left( \begin{array}{ccc} \kappa^1_1 & \cdots & \kappa^1_n \\ & \cdots & \\ \kappa^n_1 & \cdots & \kappa^n_n \\ \end{array} \right) \left( \begin{array}{c} {x}^1 \\ \vdots \\ {x}^n \\ \end{array} \right) \]
    このとき,
      \[ {X}^i = \sum_k \kappa^i_k\, {x}^k \\ \Longrightarrow \frac{\partial {X}^i}{\partial {x}^j} = \sum_k \kappa^i_k\, \frac{\partial {x}^k}{\partial {x}^j} = \sum_k \kappa^i_k\, \delta^k_j = \kappa^i_j \]
    結局,つぎのようになる:
      \[ ( {\bf e}_1\, \cdots\, {\bf e}_n ) = ( {\bf E}_1\, \cdots\, {\bf E}_n ) \left( \begin{array}{ccc} \frac{\partial {X}^1}{\partial {x}^1} & \cdots & \frac{\partial {X}^1}{\partial {x}^n} \\ & \cdots & \\ \frac{\partial {X}^n}{\partial {x}^1} & \cdots & \frac{\partial {X}^n}{\partial {x}^n} \\ \end{array} \right) \\ \\ \left( \begin{array}{c} {X}^1 \\ \vdots \\ {X}^n \\ \end{array} \right) = \left( \begin{array}{ccc} \frac{\partial {X}^1}{\partial {x}^1} & \cdots & \frac{\partial {X}^1}{\partial {x}^n} \\ & \cdots & \\ \frac{\partial {X}^n}{\partial {x}^1} & \cdots & \frac{\partial {X}^n}{\partial {x}^n} \\ \end{array} \right) \left( \begin{array}{c} {x}^1 \\ \vdots \\ {x}^n \\ \end{array} \right) \]

    さらに
      \[ ( {\bf E}_1\, \cdots\, {\bf E}_n ) = ( {\bf e}_1\, \cdots\, {\bf e}_n ) \left( \begin{array}{ccc} \frac{\partial {x}^1}{\partial {X}^1} & \cdots & \frac{\partial {x}^1}{\partial {X}^n} \\ & \cdots & \\ \frac{\partial {x}^n}{\partial {X}^1} & \cdots & \frac{\partial {x}^n}{\partial {X}^n} \\ \end{array} \right) \\ \\ \left( \begin{array}{c} {x}^1 \\ \vdots \\ {x}^n \\ \end{array} \right) = \left( \begin{array}{ccc} \frac{\partial {x}^1}{\partial {X}^1} & \cdots & \frac{\partial {x}^1}{\partial {X}^n} \\ & \cdots & \\ \frac{\partial {x}^n}{\partial {X}^1} & \cdots & \frac{\partial {x}^n}{\partial {X}^n} \\ \end{array} \right) \left( \begin{array}{c} {X}^1 \\ \vdots \\ {X}^n \\ \end{array} \right) \]


    つぎを,\({\bf E}\) の基底変換とする:
      \[ ( {\bf E’}_1\, \cdots\, {\bf E’}_n ) = ( {\bf E}_1\, \cdots\, {\bf E}_n ) \left( \begin{array}{ccc} \gamma^1_1 & \cdots & \gamma^1_n \\ & \cdots & \\ \gamma^n_1 & \cdots & \gamma^n_n \\ \end{array} \right) \]
    基底
      \[ {\bf E'} = \{{\bf E’}_1\, \cdots\, {\bf E’}_n \} \]
    に対応する座標を \({X'}^i \) 座標と呼ぶ。

    行列 \( (\gamma^i_j) \) は,つぎのように座標の変換行列になる:
      \[ \left( \begin{array}{c} {X}^1 \\ \vdots \\ {X}^n \\ \end{array} \right) = \left( \begin{array}{ccc} \gamma^1_1 & \cdots & \gamma^1_n \\ & \cdots & \\ \gamma^n_1 & \cdots & \gamma^n_n \\ \end{array} \right) \left( \begin{array}{c} {X'}^1 \\ \vdots \\ {X'}^n \\ \end{array} \right) \]
    このとき,
      \[ {X}^i = \sum_k \gamma^i_k\, {X'}^k \\ \Longrightarrow \frac{\partial {X}^i}{\partial {X'}^j} = \sum_k \gamma^i_k\, \frac{\partial {X'}^k}{\partial {X'}^j} = \sum_k \gamma^i_k\, \delta^k_j = \gamma^i_j \]
    結局,つぎのようになる:
      \[ ( {\bf E'}_1\, \cdots\, {\bf E'}_n ) = ( {\bf E}_1\, \cdots\, {\bf E}_n ) \left( \begin{array}{ccc} \frac{\partial {X}^1}{\partial {X'}^1} & \cdots & \frac{\partial {X}^1}{\partial {X'}^n} \\ & \cdots & \\ \frac{\partial {X}^n}{\partial {X'}^1} & \cdots & \frac{\partial {X}^n}{\partial {X'}^n} \\ \end{array} \right) \\ \\ \left( \begin{array}{c} {X}^1 \\ \vdots \\ {X}^n \\ \end{array} \right) = \left( \begin{array}{ccc} \frac{\partial {X}^1}{\partial {X'}^1} & \cdots & \frac{\partial {X}^1}{\partial {X'}^n} \\ & \cdots & \\ \frac{\partial {X}^n}{\partial {X'}^1} & \cdots & \frac{\partial {X}^n}{\partial {X'}^n} \\ \end{array} \right) \left( \begin{array}{c} {X'}^1 \\ \vdots \\ {X'}^n \\ \end{array} \right) \]

    さらに
      \[ ( {\bf E}_1\, \cdots\, {\bf E}_n ) = ( {\bf E'}_1\, \cdots\, {\bf E'}_n ) \left( \begin{array}{ccc} \frac{\partial {X'}^1}{\partial {X}^1} & \cdots & \frac{\partial {X'}^1}{\partial {X}^n} \\ & \cdots & \\ \frac{\partial {X'}^n}{\partial {X}^1} & \cdots & \frac{\partial {X'}^n}{\partial {X}^n} \\ \end{array} \right) \\ \\ \left( \begin{array}{c} {X'}^1 \\ \vdots \\ {X'}^n \\ \end{array} \right) = \left( \begin{array}{ccc} \frac{\partial {X'}^1}{\partial {X}^1} & \cdots & \frac{\partial {X'}^1}{\partial {X}^n} \\ & \cdots & \\ \frac{\partial {X'}^n}{\partial {X}^1} & \cdots & \frac{\partial {X'}^n}{\partial {X}^n} \\ \end{array} \right) \left( \begin{array}{c} {X}^1 \\ \vdots \\ {X}^n \\ \end{array} \right) \]


    曲線座標はデカルト座標に固定されている格好にある。
    \({X'}^i \) 座標に伴う曲線座標を,\({x'}^i\) 座標と呼び,これの基底──局所直線基底──を,
      \[ {\bf e'} = \{{\bf e’}_1\, \cdots\, {\bf e’}_n \} \]
    とする。

    よって,
      \[ ( {\bf e'}_1\, \cdots\, {\bf e'}_n ) = ( {\bf E'}_1\, \cdots\, {\bf E'}_n ) \left( \begin{array}{ccc} \frac{\partial {X'}^1}{\partial {x'}^1} & \cdots & \frac{\partial {X'}^1}{\partial {x'}^n} \\ & \cdots & \\ \frac{\partial {X'}^n}{\partial {x'}^1} & \cdots & \frac{\partial {X'}^n}{\partial {x'}^n} \\ \end{array} \right) \\ \\ \left( \begin{array}{c} {X'}^1 \\ \vdots \\ {X'}^n \\ \end{array} \right) = \left( \begin{array}{ccc} \frac{\partial {X'}^1}{\partial {x'}^1} & \cdots & \frac{\partial {X'}^1}{\partial {x'}^n} \\ & \cdots & \\ \frac{\partial {X'}^n}{\partial {x'}^1} & \cdots & \frac{\partial {X'}^n}{\partial {x'}^n} \\ \end{array} \right) \left( \begin{array}{c} {x'}^1 \\ \vdots \\ {x'}^n \\ \end{array} \right) \\ \\ \left( \begin{array}{c} {x'}^1 \\ \vdots \\ {x'}^n \\ \end{array} \right) = \left( \begin{array}{ccc} \frac{\partial {x'}^1}{\partial {X'}^1} & \cdots & \frac{\partial {x'}^1}{\partial {X'}^n} \\ & \cdots & \\ \frac{\partial {x'}^n}{\partial {X'}^1} & \cdots & \frac{\partial {x'}^n}{\partial {X'}^n} \\ \end{array} \right) \left( \begin{array}{c} {X'}^1 \\ \vdots \\ {X'}^n \\ \end{array} \right) \]
    そしてこれより, \[ ( {\bf e'}_1\, \cdots\, {\bf e'}_n ) = ( {\bf E'}_1\, \cdots\, {\bf E'}_n ) \left( \begin{array}{ccc} \frac{\partial {X'}^1}{\partial {x'}^1} & \cdots & \frac{\partial {X'}^1}{\partial {x'}^n} \\ & \cdots & \\ \frac{\partial {X'}^n}{\partial {x'}^1} & \cdots & \frac{\partial {X'}^n}{\partial {x'}^n} \\ \end{array} \right) \\= ( {\bf E}_1\, \cdots\, {\bf E}_n ) \left( \begin{array}{ccc} \frac{\partial {X}^1}{\partial {X'}^1} & \cdots & \frac{\partial {X}^1}{\partial {X'}^n} \\ & \cdots & \\ \frac{\partial {X}^n}{\partial {X'}^1} & \cdots & \frac{\partial {X}^n}{\partial {X'}^n} \\ \end{array} \right) \left( \begin{array}{ccc} \frac{\partial {X'}^1}{\partial {x'}^1} & \cdots & \frac{\partial {X'}^1}{\partial {x'}^n} \\ & \cdots & \\ \frac{\partial {X'}^n}{\partial {x'}^1} & \cdots & \frac{\partial {X'}^n}{\partial {x'}^n} \\ \end{array} \right) \\= ( {\bf e}_1\, \cdots\, {\bf e}_n ) \left( \begin{array}{ccc} \frac{\partial {x}^1}{\partial {X}^1} & \cdots & \frac{\partial {x}^1}{\partial {X}^n} \\ & \cdots & \\ \frac{\partial {x}^n}{\partial {X}^1} & \cdots & \frac{\partial {x}^n}{\partial {X}^n} \\ \end{array} \right) \left( \begin{array}{ccc} \sum_k \frac{\partial {X}^1}{\partial {X'}^k} \frac{\partial {X'}^k}{\partial {x'}^1} & \cdots & \sum_k \frac{\partial {X}^1}{\partial {X'}^k} \frac{\partial {X'}^k}{\partial {x'}^n} \\ & \cdots & \\ \sum_k \frac{\partial {X}^n}{\partial {X'}^k} \frac{\partial {X'}^k}{\partial {x'}^1} & \cdots & \sum_k \frac{\partial {X}^n}{\partial {X'}^k} \frac{\partial {X'}^k}{\partial {x'}^n} \\ \end{array} \right) \\= ( {\bf e}_1\, \cdots\, {\bf e}_n ) \left( \begin{array}{ccc} \frac{\partial {x}^1}{\partial {X}^1} & \cdots & \frac{\partial {x}^1}{\partial {X}^n} \\ & \cdots & \\ \frac{\partial {x}^n}{\partial {X}^1} & \cdots & \frac{\partial {x}^n}{\partial {X}^n} \\ \end{array} \right) \left( \begin{array}{ccc} \frac{\partial {X}^1}{\partial {x'}^1} & \cdots & \frac{\partial {X}^1}{\partial {x'}^n} \\ & \cdots & \\ \frac{\partial {X}^n}{\partial {x'}^1} & \cdots & \frac{\partial {X}^n}{\partial {x'}^n} \\ \end{array} \right) \\= ( {\bf e}_1\, \cdots\, {\bf e}_n ) \left( \begin{array}{ccc} \sum_k \frac{\partial {x}^1}{\partial {X}^k} \frac{\partial {X}^k}{\partial {x'}^1} & \cdots & \sum_k \frac{\partial {x}^1}{\partial {X}^k} \frac{\partial {X}^k}{\partial {x'}^n} \\ & \cdots & \\ \sum_k \frac{\partial {x}^n}{\partial {X}^k} \frac{\partial {X}^k}{\partial {x'}^1} & \cdots & \sum_k \frac{\partial {x}^n}{\partial {X}^k} \frac{\partial {X}^k}{\partial {x'}^n} \\ \end{array} \right) \\= ( {\bf e}_1\, \cdots\, {\bf e}_n ) \left( \begin{array}{ccc} \frac{\partial {x}^1}{\partial {x'}^1} & \cdots & \frac{\partial {x}^1}{\partial {x'}^n} \\ & \cdots & \\ \frac{\partial {x}^n}{\partial {x'}^1} & \cdots & \frac{\partial {x}^n}{\partial {x'}^n} \\ \end{array} \right) \]
    \[ \left( \begin{array}{c} {x}^1 \\ \vdots \\ {x}^n \\ \end{array} \right) = \left( \begin{array}{ccc} \frac{\partial {x}^1}{\partial {x'}^1} & \cdots & \frac{\partial {x}^1}{\partial {x'}^n} \\ & \cdots & \\ \frac{\partial {x}^n}{\partial {x'}^1} & \cdots & \frac{\partial {x}^n}{\partial {x'}^n} \\ \end{array} \right) \left( \begin{array}{c} {x'}^1 \\ \vdots \\ {x'}^n \\ \end{array} \right) \] \[ \left( \begin{array}{c} {x'}^1 \\ \vdots \\ {x'}^n \\ \end{array} \right) = \left( \begin{array}{ccc} \frac{\partial {x'}^1}{\partial {x}^1} & \cdots & \frac{\partial {x'}^1}{\partial {x}^n} \\ & \cdots & \\ \frac{\partial {x'}^n}{\partial {x}^1} & \cdots & \frac{\partial {x'}^n}{\partial {x}^n} \\ \end{array} \right) \left( \begin{array}{c} {x}^1 \\ \vdots \\ {x}^n \\ \end{array} \right) \]