Up prediction 作成: 2021-04-20
更新: 2021-04-20


    モデルが行う「画像の分類」の内容は,画像が各類に属する確率である。
    この表現形式の分類を,「prediction」と呼ぶ:
      >>> predictions = model.predict(x_test)

    最初の画像の prediction は:
      >>> predictions[0] array([6.2597333e-06, 4.3360582e-09, 2.0390084e-05, 4.1531216e-04, 1.2437715e-09, 1.7457477e-06, 1.8881036e-10, 9.9954408e-01, 3.7411795e-07, 9.5864243e-06], dtype=float32)
    一番確信度が高いラベルは:
      >>> import numpy as np >>> np.argmax(predictions[0]) 7
    そして実際は:
      >>> y_test[0] 7
    当たりである。


    prediction をグラフに表してみる
    ──最初の10枚の画像に対する prediction:
    $ vi predictions.py
    #!/usr/bin/env python from tensorflow import keras import numpy as np import matplotlib.pyplot as plt # data mnist = keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() class_names = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] # image-preprocessing x_train = x_train / 255.0 x_test = x_test / 255.0 # model setup model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # training model.fit(x_train, y_train, epochs=5) # prediction predictions = model.predict(x_test) def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array[i], true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array[i], true_label[i] plt.grid(False) plt.xticks([]) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') # prediction : test-image 0 - 14 num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions, y_test, x_test) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions, y_test) plt.show()


    $ chmod +x predictions.py

    $ ./predictions.py
      Train on 60000 samples Epoch 1/5 60000/60000 [==============================] - 24s 398us/sample - loss: 0.2648 - acc: 0.9247 Epoch 2/5 60000/60000 [==============================] - 23s 388us/sample - loss: 0.1160 - acc: 0.9656 Epoch 3/5 60000/60000 [==============================] - 23s 391us/sample - loss: 0.0802 - acc: 0.9753 Epoch 4/5 60000/60000 [==============================] - 24s 392us/sample - loss: 0.0597 - acc: 0.9818 Epoch 5/5 60000/60000 [==============================] - 24s 393us/sample - loss: 0.0459 - acc: 0.9863