Up VL53L0X.py 作成: 2021-04-11
更新: 2021-04-11


# https://www.dexterindustries.com # # Copyright (c) 2017 Dexter Industries # Released under the MIT license (http://choosealicense.com/licenses/mit/). # For more information see https://github.com/DexterInd/DI_Sensors/blob/master/LICENSE.md # # Python drivers for the VL53L0X laser distance sensor from __future__ import print_function from __future__ import division import di_i2c import time # Constants SYSRANGE_START = 0x00 SYSTEM_THRESH_HIGH = 0x0C SYSTEM_THRESH_LOW = 0x0E SYSTEM_SEQUENCE_CONFIG = 0x01 SYSTEM_RANGE_CONFIG = 0x09 SYSTEM_INTERMEASUREMENT_PERIOD = 0x04 SYSTEM_INTERRUPT_CONFIG_GPIO = 0x0A GPIO_HV_MUX_ACTIVE_HIGH = 0x84 SYSTEM_INTERRUPT_CLEAR = 0x0B RESULT_INTERRUPT_STATUS = 0x13 RESULT_RANGE_STATUS = 0x14 RESULT_CORE_AMBIENT_WINDOW_EVENTS_RTN = 0xBC RESULT_CORE_RANGING_TOTAL_EVENTS_RTN = 0xC0 RESULT_CORE_AMBIENT_WINDOW_EVENTS_REF = 0xD0 RESULT_CORE_RANGING_TOTAL_EVENTS_REF = 0xD4 RESULT_PEAK_SIGNAL_RATE_REF = 0xB6 ALGO_PART_TO_PART_RANGE_OFFSET_MM = 0x28 I2C_SLAVE_DEVICE_ADDRESS = 0x8A MSRC_CONFIG_CONTROL = 0x60 PRE_RANGE_CONFIG_MIN_SNR = 0x27 PRE_RANGE_CONFIG_VALID_PHASE_LOW = 0x56 PRE_RANGE_CONFIG_VALID_PHASE_HIGH = 0x57 PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT = 0x64 FINAL_RANGE_CONFIG_MIN_SNR = 0x67 FINAL_RANGE_CONFIG_VALID_PHASE_LOW = 0x47 FINAL_RANGE_CONFIG_VALID_PHASE_HIGH = 0x48 FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT = 0x44 PRE_RANGE_CONFIG_SIGMA_THRESH_HI = 0x61 PRE_RANGE_CONFIG_SIGMA_THRESH_LO = 0x62 PRE_RANGE_CONFIG_VCSEL_PERIOD = 0x50 PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x51 PRE_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x52 SYSTEM_HISTOGRAM_BIN = 0x81 HISTOGRAM_CONFIG_INITIAL_PHASE_SELECT = 0x33 HISTOGRAM_CONFIG_READOUT_CTRL = 0x55 FINAL_RANGE_CONFIG_VCSEL_PERIOD = 0x70 FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x71 FINAL_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x72 CROSSTALK_COMPENSATION_PEAK_RATE_MCPS = 0x20 MSRC_CONFIG_TIMEOUT_MACROP = 0x46 SOFT_RESET_GO2_SOFT_RESET_N = 0xBF IDENTIFICATION_MODEL_ID = 0xC0 IDENTIFICATION_REVISION_ID = 0xC2 OSC_CALIBRATE_VAL = 0xF8 GLOBAL_CONFIG_VCSEL_WIDTH = 0x32 GLOBAL_CONFIG_SPAD_ENABLES_REF_0 = 0xB0 GLOBAL_CONFIG_SPAD_ENABLES_REF_1 = 0xB1 GLOBAL_CONFIG_SPAD_ENABLES_REF_2 = 0xB2 GLOBAL_CONFIG_SPAD_ENABLES_REF_3 = 0xB3 GLOBAL_CONFIG_SPAD_ENABLES_REF_4 = 0xB4 GLOBAL_CONFIG_SPAD_ENABLES_REF_5 = 0xB5 GLOBAL_CONFIG_REF_EN_START_SELECT = 0xB6 DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD = 0x4E DYNAMIC_SPAD_REF_EN_START_OFFSET = 0x4F POWER_MANAGEMENT_GO1_POWER_FORCE = 0x80 VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV = 0x89 ALGO_PHASECAL_LIM = 0x30 ALGO_PHASECAL_CONFIG_TIMEOUT = 0x30 ADDRESS_DEFAULT = 0x29 class VL53L0X(object): """Drivers for VL53L0X laser distance sensor""" VcselPeriodPreRange = 0 VcselPeriodFinalRange = 1 # "global variables" io_timeout = 0 did_timeout = False # The I2C address is software programmable (volatile), and defaults to 0x52 >> 1 = 0x29. # __init__ changes the address (default to 0x54 >> 1 = 0x2A) to prevent conflicts. ADDRESS = ADDRESS_DEFAULT def __init__(self, address = 0x2A, timeout = 0.5, bus = "RPI_1SW"): self.i2c_bus = di_i2c.DI_I2C(bus = bus, address = address) try: self.i2c_bus.write_reg_8(SOFT_RESET_GO2_SOFT_RESET_N, 0x00) # try resetting from 0x2A time.sleep(0.002) except IOError: pass self.ADDRESS = ADDRESS_DEFAULT self.i2c_bus.set_address(self.ADDRESS) self.i2c_bus.write_reg_8(SOFT_RESET_GO2_SOFT_RESET_N, 0x00) # reset default 0x29 time.sleep(0.005) # delay added because threaded instantiation would fail,even with mutex in place self.i2c_bus.write_reg_8(SOFT_RESET_GO2_SOFT_RESET_N, 0x01) # release reset time.sleep(0.005) # delay added because threaded instantiation would fail,even with mutex in place self.set_address(address) self.init() # initialize the sensor self.set_timeout(timeout) # set the timeout def set_address(self, address): address &= 0x7f try: self.i2c_bus.write_reg_8(I2C_SLAVE_DEVICE_ADDRESS, address) self.ADDRESS = address self.i2c_bus.set_address(self.ADDRESS) except IOError: self.i2c_bus.set_address(address) self.i2c_bus.write_reg_8(I2C_SLAVE_DEVICE_ADDRESS, address) self.ADDRESS = address self.i2c_bus.set_address(self.ADDRESS) def init(self): self.i2c_bus.write_reg_8(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV, (self.i2c_bus.read_8(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV) | 0x01)) # set bit 0 # "Set I2C standard mode" self.i2c_bus.write_reg_8(0x88, 0x00) self.i2c_bus.write_reg_8(0x80, 0x01) self.i2c_bus.write_reg_8(0xFF, 0x01) self.i2c_bus.write_reg_8(0x00, 0x00) self.stop_variable = self.i2c_bus.read_8(0x91) self.i2c_bus.write_reg_8(0x00, 0x01) self.i2c_bus.write_reg_8(0xFF, 0x00) self.i2c_bus.write_reg_8(0x80, 0x00) # disable SIGNAL_RATE_MSRC (bit 1) and SIGNAL_RATE_PRE_RANGE (bit 4) limit checks self.i2c_bus.write_reg_8(MSRC_CONFIG_CONTROL, (self.i2c_bus.read_8(MSRC_CONFIG_CONTROL) | 0x12)) # set final range signal rate limit to 0.25 MCPS (million counts per second) self.set_signal_rate_limit(0.25) self.i2c_bus.write_reg_8(SYSTEM_SEQUENCE_CONFIG, 0xFF) # VL53L0X_DataInit() end # VL53L0X_StaticInit() begin spad_count, spad_type_is_aperture, success = self.get_spad_info() if not success: return False # The SPAD map (RefGoodSpadMap) is read by VL53L0X_get_info_from_device() in # the API, but the same data seems to be more easily readable from # GLOBAL_CONFIG_SPAD_ENABLES_REF_0 through _6, so read it from there ref_spad_map = self.i2c_bus.read_list(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, 6) # -- VL53L0X_set_reference_spads() begin (assume NVM values are valid) self.i2c_bus.write_reg_8(0xFF, 0x01) self.i2c_bus.write_reg_8(DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00) self.i2c_bus.write_reg_8(DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C) self.i2c_bus.write_reg_8(0xFF, 0x00) self.i2c_bus.write_reg_8(GLOBAL_CONFIG_REF_EN_START_SELECT, 0xB4) if spad_type_is_aperture: first_spad_to_enable = 12 # 12 is the first aperture spad else: first_spad_to_enable = 0 spads_enabled = 0 for i in range(48): if i < first_spad_to_enable or spads_enabled == spad_count: # This bit is lower than the first one that should be enabled, or # (reference_spad_count) bits have already been enabled, so zero this bit ref_spad_map[int(i / 8)] &= ~(1 << (i % 8)) elif (ref_spad_map[int(i / 8)] >> (i % 8)) & 0x1: spads_enabled += 1 self.i2c_bus.write_reg_list(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map) # -- VL53L0X_set_reference_spads() end # -- VL53L0X_load_tuning_settings() begin # DefaultTuningSettings from vl53l0x_tuning.h self.i2c_bus.write_reg_8(0xFF, 0x01) self.i2c_bus.write_reg_8(0x00, 0x00) self.i2c_bus.write_reg_8(0xFF, 0x00) self.i2c_bus.write_reg_8(0x09, 0x00) self.i2c_bus.write_reg_8(0x10, 0x00) self.i2c_bus.write_reg_8(0x11, 0x00) self.i2c_bus.write_reg_8(0x24, 0x01) self.i2c_bus.write_reg_8(0x25, 0xFF) self.i2c_bus.write_reg_8(0x75, 0x00) self.i2c_bus.write_reg_8(0xFF, 0x01) self.i2c_bus.write_reg_8(0x4E, 0x2C) self.i2c_bus.write_reg_8(0x48, 0x00) self.i2c_bus.write_reg_8(0x30, 0x20) self.i2c_bus.write_reg_8(0xFF, 0x00) self.i2c_bus.write_reg_8(0x30, 0x09) self.i2c_bus.write_reg_8(0x54, 0x00) self.i2c_bus.write_reg_8(0x31, 0x04) self.i2c_bus.write_reg_8(0x32, 0x03) self.i2c_bus.write_reg_8(0x40, 0x83) self.i2c_bus.write_reg_8(0x46, 0x25) self.i2c_bus.write_reg_8(0x60, 0x00) self.i2c_bus.write_reg_8(0x27, 0x00) self.i2c_bus.write_reg_8(0x50, 0x06) self.i2c_bus.write_reg_8(0x51, 0x00) self.i2c_bus.write_reg_8(0x52, 0x96) self.i2c_bus.write_reg_8(0x56, 0x08) self.i2c_bus.write_reg_8(0x57, 0x30) self.i2c_bus.write_reg_8(0x61, 0x00) self.i2c_bus.write_reg_8(0x62, 0x00) self.i2c_bus.write_reg_8(0x64, 0x00) self.i2c_bus.write_reg_8(0x65, 0x00) self.i2c_bus.write_reg_8(0x66, 0xA0) self.i2c_bus.write_reg_8(0xFF, 0x01) self.i2c_bus.write_reg_8(0x22, 0x32) self.i2c_bus.write_reg_8(0x47, 0x14) self.i2c_bus.write_reg_8(0x49, 0xFF) self.i2c_bus.write_reg_8(0x4A, 0x00) self.i2c_bus.write_reg_8(0xFF, 0x00) self.i2c_bus.write_reg_8(0x7A, 0x0A) self.i2c_bus.write_reg_8(0x7B, 0x00) self.i2c_bus.write_reg_8(0x78, 0x21) self.i2c_bus.write_reg_8(0xFF, 0x01) self.i2c_bus.write_reg_8(0x23, 0x34) self.i2c_bus.write_reg_8(0x42, 0x00) self.i2c_bus.write_reg_8(0x44, 0xFF) self.i2c_bus.write_reg_8(0x45, 0x26) self.i2c_bus.write_reg_8(0x46, 0x05) self.i2c_bus.write_reg_8(0x40, 0x40) self.i2c_bus.write_reg_8(0x0E, 0x06) self.i2c_bus.write_reg_8(0x20, 0x1A) self.i2c_bus.write_reg_8(0x43, 0x40) self.i2c_bus.write_reg_8(0xFF, 0x00) self.i2c_bus.write_reg_8(0x34, 0x03) self.i2c_bus.write_reg_8(0x35, 0x44) self.i2c_bus.write_reg_8(0xFF, 0x01) self.i2c_bus.write_reg_8(0x31, 0x04) self.i2c_bus.write_reg_8(0x4B, 0x09) self.i2c_bus.write_reg_8(0x4C, 0x05) self.i2c_bus.write_reg_8(0x4D, 0x04) self.i2c_bus.write_reg_8(0xFF, 0x00) self.i2c_bus.write_reg_8(0x44, 0x00) self.i2c_bus.write_reg_8(0x45, 0x20) self.i2c_bus.write_reg_8(0x47, 0x08) self.i2c_bus.write_reg_8(0x48, 0x28) self.i2c_bus.write_reg_8(0x67, 0x00) self.i2c_bus.write_reg_8(0x70, 0x04) self.i2c_bus.write_reg_8(0x71, 0x01) self.i2c_bus.write_reg_8(0x72, 0xFE) self.i2c_bus.write_reg_8(0x76, 0x00) self.i2c_bus.write_reg_8(0x77, 0x00) self.i2c_bus.write_reg_8(0xFF, 0x01) self.i2c_bus.write_reg_8(0x0D, 0x01) self.i2c_bus.write_reg_8(0xFF, 0x00) self.i2c_bus.write_reg_8(0x80, 0x01) self.i2c_bus.write_reg_8(0x01, 0xF8) self.i2c_bus.write_reg_8(0xFF, 0x01) self.i2c_bus.write_reg_8(0x8E, 0x01) self.i2c_bus.write_reg_8(0x00, 0x01) self.i2c_bus.write_reg_8(0xFF, 0x00) self.i2c_bus.write_reg_8(0x80, 0x00) # -- VL53L0X_load_tuning_settings() end # "Set interrupt config to new sample ready" # -- VL53L0X_SetGpioConfig() begin self.i2c_bus.write_reg_8(SYSTEM_INTERRUPT_CONFIG_GPIO, 0x04) self.i2c_bus.write_reg_8(GPIO_HV_MUX_ACTIVE_HIGH, self.i2c_bus.read_8(GPIO_HV_MUX_ACTIVE_HIGH) & ~0x10) # active low self.i2c_bus.write_reg_8(SYSTEM_INTERRUPT_CLEAR, 0x01) # -- VL53L0X_SetGpioConfig() end self.measurement_timing_budget_us = self.get_measurement_timing_budget() # "Disable MSRC and TCC by default" # MSRC = Minimum Signal Rate Check # TCC = Target CentreCheck # -- VL53L0X_SetSequenceStepEnable() begin self.i2c_bus.write_reg_8(SYSTEM_SEQUENCE_CONFIG, 0xE8) # -- VL53L0X_SetSequenceStepEnable() end # "Recalculate timing budget" self.set_measurement_timing_budget(self.measurement_timing_budget_us) # VL53L0X_StaticInit() end # VL53L0X_PerformRefCalibration() begin (VL53L0X_perform_ref_calibration()) # -- VL53L0X_perform_vhv_calibration() begin self.i2c_bus.write_reg_8(SYSTEM_SEQUENCE_CONFIG, 0x01) if not self.perform_single_ref_calibration(0x40): return False # -- VL53L0X_perform_vhv_calibration() end # -- VL53L0X_perform_phase_calibration() begin self.i2c_bus.write_reg_8(SYSTEM_SEQUENCE_CONFIG, 0x02) if not self.perform_single_ref_calibration(0x00): return False # -- VL53L0X_perform_phase_calibration() end # "restore the previous Sequence Config" self.i2c_bus.write_reg_8(SYSTEM_SEQUENCE_CONFIG, 0xE8) # VL53L0X_PerformRefCalibration() end return True # duplicate method # def set_signal_rate_limit(self, limit_Mcps): # if (limit_Mcps < 0 or limit_Mcps > 511.99): # return False # # Q9.7 fixed point format (9 integer bits, 7 fractional bits) # self.i2c_bus.write_reg_16(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT, int(limit_Mcps * (1 << 7))) # return True # Get reference SPAD (single photon avalanche diode) count and type # based on VL53L0X_get_info_from_device(), # but only gets reference SPAD count and type def get_spad_info(self): self.i2c_bus.write_reg_8(0x80, 0x01) self.i2c_bus.write_reg_8(0xFF, 0x01) self.i2c_bus.write_reg_8(0x00, 0x00) self.i2c_bus.write_reg_8(0xFF, 0x06) self.i2c_bus.write_reg_8(0x83, self.i2c_bus.read_8(0x83) | 0x04) self.i2c_bus.write_reg_8(0xFF, 0x07) self.i2c_bus.write_reg_8(0x81, 0x01) self.i2c_bus.write_reg_8(0x80, 0x01) self.i2c_bus.write_reg_8(0x94, 0x6b) self.i2c_bus.write_reg_8(0x83, 0x00) self.start_timeout() while (self.i2c_bus.read_8(0x83) == 0x00): if (self.check_timeout_expired()): return 0, 0, False self.i2c_bus.write_reg_8(0x83, 0x01) tmp = self.i2c_bus.read_8(0x92) count = tmp & 0x7f type_is_aperture = (tmp >> 7) & 0x01 self.i2c_bus.write_reg_8(0x81, 0x00) self.i2c_bus.write_reg_8(0xFF, 0x06) self.i2c_bus.write_reg_8(0x83, self.i2c_bus.read_8(0x83) & ~0x04) self.i2c_bus.write_reg_8(0xFF, 0x01) self.i2c_bus.write_reg_8(0x00, 0x01) self.i2c_bus.write_reg_8(0xFF, 0x00) self.i2c_bus.write_reg_8(0x80, 0x00) return count, type_is_aperture, True # Check if timeout is enabled (set to nonzero value) and has expired def check_timeout_expired(self): if(self.io_timeout > 0 and (time.time() - self.timeout_start) > self.io_timeout): return True return False # Record the current time to check an upcoming timeout against def start_timeout(self): self.timeout_start = time.time() #SequenceStepEnables = {"tcc":0, "msrc":0, "dss":0, "pre_range":0, "final_range":0} #SequenceStepTimeouts = {"pre_range_vcsel_period_pclks":0, "final_range_vcsel_period_pclks":0, "msrc_dss_tcc_mclks":0, "pre_range_mclks":0, "final_range_mclks":0, "msrc_dss_tcc_us":0, "pre_range_us":0, "final_range_us":0} # Get the measurement timing budget in microseconds # based on VL53L0X_get_measurement_timing_budget_micro_seconds() # in us def get_measurement_timing_budget(self): StartOverhead = 1910 # note that this is different than the value in set_ EndOverhead = 960 MsrcOverhead = 660 TccOverhead = 590 DssOverhead = 690 PreRangeOverhead = 660 FinalRangeOverhead = 550 # "Start and end overhead times always present" budget_us = StartOverhead + EndOverhead enables = self.get_sequence_step_enables() timeouts = self.get_sequence_step_timeouts(enables["pre_range"]) if (enables["tcc"]): budget_us += (timeouts["msrc_dss_tcc_us"] + TccOverhead) if (enables["dss"]): budget_us += 2 * (timeouts["msrc_dss_tcc_us"] + DssOverhead) elif (enables["msrc"]): budget_us += (timeouts["msrc_dss_tcc_us"] + MsrcOverhead) if (enables["pre_range"]): budget_us += (timeouts["pre_range_us"] + PreRangeOverhead) if (enables["final_range"]): budget_us += (timeouts["final_range_us"] + FinalRangeOverhead) self.measurement_timing_budget_us = budget_us # store for internal reuse return budget_us # Get sequence step enables # based on VL53L0X_get_sequence_step_enables() def get_sequence_step_enables(self): sequence_config = self.i2c_bus.read_8(SYSTEM_SEQUENCE_CONFIG) SequenceStepEnables = {"tcc":0, "msrc":0, "dss":0, "pre_range":0, "final_range":0} SequenceStepEnables["tcc"] = (sequence_config >> 4) & 0x1 SequenceStepEnables["dss"] = (sequence_config >> 3) & 0x1 SequenceStepEnables["msrc"] = (sequence_config >> 2) & 0x1 SequenceStepEnables["pre_range"] = (sequence_config >> 6) & 0x1 SequenceStepEnables["final_range"] = (sequence_config >> 7) & 0x1 return SequenceStepEnables # Get sequence step timeouts # based on get_sequence_step_timeout(), # but gets all timeouts instead of just the requested one, and also stores # intermediate values def get_sequence_step_timeouts(self, pre_range): SequenceStepTimeouts = {"pre_range_vcsel_period_pclks":0, "final_range_vcsel_period_pclks":0, "msrc_dss_tcc_mclks":0, "pre_range_mclks":0, "final_range_mclks":0, "msrc_dss_tcc_us":0, "pre_range_us":0, "final_range_us":0} SequenceStepTimeouts["pre_range_vcsel_period_pclks"] = self.get_vcsel_pulse_period(self.VcselPeriodPreRange) SequenceStepTimeouts["msrc_dss_tcc_mclks"] = self.i2c_bus.read_8(MSRC_CONFIG_TIMEOUT_MACROP) + 1 SequenceStepTimeouts["msrc_dss_tcc_us"] = self.timeout_mclks_to_microseconds(SequenceStepTimeouts["msrc_dss_tcc_mclks"], SequenceStepTimeouts["pre_range_vcsel_period_pclks"]) SequenceStepTimeouts["pre_range_mclks"] = self.decode_timeout(self.i2c_bus.read_16(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI)) SequenceStepTimeouts["pre_range_us"] = self.timeout_mclks_to_microseconds(SequenceStepTimeouts["pre_range_mclks"], SequenceStepTimeouts["pre_range_vcsel_period_pclks"]) SequenceStepTimeouts["final_range_vcsel_period_pclks"] = self.get_vcsel_pulse_period(self.VcselPeriodFinalRange) SequenceStepTimeouts["final_range_mclks"] = self.decode_timeout(self.i2c_bus.read_16(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI)) if (pre_range): SequenceStepTimeouts["final_range_mclks"] -= SequenceStepTimeouts["pre_range_mclks"] SequenceStepTimeouts["final_range_us"] = self.timeout_mclks_to_microseconds(SequenceStepTimeouts["final_range_mclks"], SequenceStepTimeouts["final_range_vcsel_period_pclks"]) return SequenceStepTimeouts # Decode VCSEL (vertical cavity surface emitting laser) pulse period in PCLKs # from register value # based on VL53L0X_decode_vcsel_period() def decode_vcsel_period(self, reg_val): return (((reg_val) + 1) << 1) # Get the VCSEL pulse period in PCLKs for the given period type. # based on VL53L0X_get_vcsel_pulse_period() def get_vcsel_pulse_period(self, type): if type == self.VcselPeriodPreRange: return self.decode_vcsel_period(self.i2c_bus.read_8(PRE_RANGE_CONFIG_VCSEL_PERIOD)) elif type == self.VcselPeriodFinalRange: return self.decode_vcsel_period(self.i2c_bus.read_8(FINAL_RANGE_CONFIG_VCSEL_PERIOD)) else: return 255 # Convert sequence step timeout from MCLKs to microseconds with given VCSEL period in PCLKs # based on VL53L0X_calc_timeout_us() def timeout_mclks_to_microseconds(self, timeout_period_mclks, vcsel_period_pclks): macro_period_ns = self.calc_macro_period(vcsel_period_pclks) return ((timeout_period_mclks * macro_period_ns) + (macro_period_ns / 2)) / 1000 # Calculate macro period in *nanoseconds* from VCSEL period in PCLKs # based on VL53L0X_calc_macro_period_ps() # PLL_period_ps = 1655; macro_period_vclks = 2304 def calc_macro_period(self, vcsel_period_pclks): return (((2304 * vcsel_period_pclks * 1655) + 500) / 1000) # Decode sequence step timeout in MCLKs from register value # based on VL53L0X_decode_timeout() # Note: the original function returned a uint32_t, but the return value is #always stored in a uint16_t. def decode_timeout(self, reg_val): # format: "(LSByte * 2^MSByte) + 1" return ((reg_val & 0x00FF) << ((reg_val & 0xFF00) >> 8)) + 1 # Set the measurement timing budget in microseconds, which is the time allowed # for one measurement the ST API and this library take care of splitting the # timing budget among the sub-steps in the ranging sequence. A longer timing # budget allows for more accurate measurements. Increasing the budget by a # factor of N decreases the range measurement standard deviation by a factor of # sqrt(N). Defaults to about 33 milliseconds the minimum is 20 ms. # based on VL53L0X_set_measurement_timing_budget_micro_seconds() def set_measurement_timing_budget(self, budget_us): StartOverhead = 1320 # note that this is different than the value in get_ EndOverhead = 960 MsrcOverhead = 660 TccOverhead = 590 DssOverhead = 690 PreRangeOverhead = 660 FinalRangeOverhead = 550 MinTimingBudget = 20000 if budget_us < MinTimingBudget: return False used_budget_us = StartOverhead + EndOverhead enables = self.get_sequence_step_enables() timeouts = self.get_sequence_step_timeouts(enables["pre_range"]) if enables["tcc"]: used_budget_us += (timeouts["msrc_dss_tcc_us"] + TccOverhead) if enables["dss"]: used_budget_us += 2 * (timeouts["msrc_dss_tcc_us"] + DssOverhead) elif enables["msrc"]: used_budget_us += (timeouts["msrc_dss_tcc_us"] + MsrcOverhead) if enables["pre_range"]: used_budget_us += (timeouts["pre_range_us"] + PreRangeOverhead) if enables["final_range"]: used_budget_us += FinalRangeOverhead # "Note that the final range timeout is determined by the timing # budget and the sum of all other timeouts within the sequence. # If there is no room for the final range timeout, then an error # will be set. Otherwise the remaining time will be applied to # the final range." if used_budget_us > budget_us: # "Requested timeout too big." return False final_range_timeout_us = budget_us - used_budget_us # set_sequence_step_timeout() begin # (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE) # "For the final range timeout, the pre-range timeout # must be added. To do this both final and pre-range # timeouts must be expressed in macro periods MClks # because they have different vcsel periods." final_range_timeout_mclks = self.timeout_microseconds_to_mclks(final_range_timeout_us, timeouts["final_range_vcsel_period_pclks"]) if enables["pre_range"]: final_range_timeout_mclks += timeouts["pre_range_mclks"] self.i2c_bus.write_reg_16(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI, self.encode_timeout(final_range_timeout_mclks)) # set_sequence_step_timeout() end self.measurement_timing_budget_us = budget_us # store for internal reuse return True # Encode sequence step timeout register value from timeout in MCLKs # based on VL53L0X_encode_timeout() # Note: the original function took a uint16_t, but the argument passed to it # is always a uint16_t. def encode_timeout(self, timeout_mclks): # format: "(LSByte * 2^MSByte) + 1" ls_byte = 0 ms_byte = 0 if timeout_mclks > 0: ls_byte = timeout_mclks - 1 while ((int(ls_byte) & 0xFFFFFF00) > 0): ls_byte /= 2 # >>= ms_byte += 1 return ((ms_byte << 8) | (int(ls_byte) & 0xFF)) else: return 0 # Convert sequence step timeout from microseconds to MCLKs with given VCSEL period in PCLKs # based on VL53L0X_calc_timeout_mclks() def timeout_microseconds_to_mclks(self, timeout_period_us, vcsel_period_pclks): macro_period_ns = self.calc_macro_period(vcsel_period_pclks) return (((timeout_period_us * 1000) + (macro_period_ns / 2)) / macro_period_ns) # based on VL53L0X_perform_single_ref_calibration() def perform_single_ref_calibration(self, vhv_init_byte): self.i2c_bus.write_reg_8(SYSRANGE_START, 0x01 | vhv_init_byte) # VL53L0X_REG_SYSRANGE_MODE_START_STOP self.start_timeout() while ((self.i2c_bus.read_8(RESULT_INTERRUPT_STATUS) & 0x07) == 0): if self.check_timeout_expired(): return False self.i2c_bus.write_reg_8(SYSTEM_INTERRUPT_CLEAR, 0x01) self.i2c_bus.write_reg_8(SYSRANGE_START, 0x00) return True def set_timeout(self, timeout): self.io_timeout = timeout # Start continuous ranging measurements. If period_ms (optional) is 0 or not # given, continuous back-to-back mode is used (the sensor takes measurements as # often as possible) otherwise, continuous timed mode is used, with the given # inter-measurement period in milliseconds determining how often the sensor # takes a measurement. # based on VL53L0X_StartMeasurement() def start_continuous(self, period_ms = 0): self.i2c_bus.write_reg_8(0x80, 0x01) self.i2c_bus.write_reg_8(0xFF, 0x01) self.i2c_bus.write_reg_8(0x00, 0x00) self.i2c_bus.write_reg_8(0x91, self.stop_variable) self.i2c_bus.write_reg_8(0x00, 0x01) self.i2c_bus.write_reg_8(0xFF, 0x00) self.i2c_bus.write_reg_8(0x80, 0x00) if period_ms != 0: # continuous timed mode # VL53L0X_SetInterMeasurementPeriodMilliSeconds() begin osc_calibrate_val = self.i2c_bus.read_16(OSC_CALIBRATE_VAL) if osc_calibrate_val != 0: period_ms *= osc_calibrate_val self.i2c_bus.write_reg_32(SYSTEM_INTERMEASUREMENT_PERIOD, period_ms) # VL53L0X_SetInterMeasurementPeriodMilliSeconds() end self.i2c_bus.write_reg_8(SYSRANGE_START, 0x04) # VL53L0X_REG_SYSRANGE_MODE_TIMED else: # continuous back-to-back mode self.i2c_bus.write_reg_8(SYSRANGE_START, 0x02) # VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK # Returns a range reading in millimeters when continuous mode is active # (read_range_single_millimeters() also calls this function after starting a # single-shot range measurement) def read_range_continuous_millimeters(self): self.start_timeout() while ((self.i2c_bus.read_8(RESULT_INTERRUPT_STATUS) & 0x07) == 0): if self.check_timeout_expired(): self.did_timeout = True raise IOError("read_range_continuous_millimeters timeout") # assumptions: Linearity Corrective Gain is 1000 (default) # fractional ranging is not enabled range = self.i2c_bus.read_16(RESULT_RANGE_STATUS + 10) self.i2c_bus.write_reg_8(SYSTEM_INTERRUPT_CLEAR, 0x01) return range # Did a timeout occur in one of the read functions since the last call to # timeout_occurred()? def timeout_occurred(self): tmp = self.did_timeout self.did_timeout = False return tmp # Set the VCSEL (vertical cavity surface emitting laser) pulse period for the # given period type (pre-range or final range) to the given value in PCLKs. # Longer periods seem to increase the potential range of the sensor. # Valid values are (even numbers only): # pre: 12 to 18 (initialized default: 14) # final: 8 to 14 (initialized default: 10) # based on VL53L0X_setVcselPulsePeriod() def set_vcsel_pulse_period(self, type, period_pclks): vcsel_period_reg = self.encode_vcsel_period(period_pclks) enables = self.get_sequence_step_enables() timeouts = self.get_sequence_step_timeouts(enables["pre_range"]) # "Apply specific settings for the requested clock period" # "Re-calculate and apply timeouts, in macro periods" # "When the VCSEL period for the pre or final range is changed, # the corresponding timeout must be read from the device using # the current VCSEL period, then the new VCSEL period can be # applied. The timeout then must be written back to the device # using the new VCSEL period. # # For the MSRC timeout, the same applies - this timeout being # dependant on the pre-range vcsel period." if type == self.VcselPeriodPreRange: # "Set phase check limits" if period_pclks == 12: self.i2c_bus.write_reg_8(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x18) elif period_pclks == 14: self.i2c_bus.write_reg_8(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x30) elif period_pclks == 16: self.i2c_bus.write_reg_8(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x40) elif period_pclks == 18: self.i2c_bus.write_reg_8(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x50) else: return False self.i2c_bus.write_reg_8(PRE_RANGE_CONFIG_VALID_PHASE_LOW, 0x08) # apply new VCSEL period self.i2c_bus.write_reg_8(PRE_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg) # update timeouts # set_sequence_step_timeout() begin # (SequenceStepId == VL53L0X_SEQUENCESTEP_PRE_RANGE) new_pre_range_timeout_mclks = self.timeout_microseconds_to_mclks(timeouts["pre_range_us"], period_pclks) self.i2c_bus.write_reg_16(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI, self.encode_timeout(new_pre_range_timeout_mclks)) # set_sequence_step_timeout() end # set_sequence_step_timeout() begin # (SequenceStepId == VL53L0X_SEQUENCESTEP_MSRC) new_msrc_timeout_mclks = self.timeout_microseconds_to_mclks(timeouts["msrc_dss_tcc_us"], period_pclks) if new_msrc_timeout_mclks > 256: self.i2c_bus.write_reg_8(MSRC_CONFIG_TIMEOUT_MACROP, 255) else: self.i2c_bus.write_reg_8(MSRC_CONFIG_TIMEOUT_MACROP, (new_msrc_timeout_mclks - 1)) # set_sequence_step_timeout() end elif type == self.VcselPeriodFinalRange: if period_pclks == 8: self.i2c_bus.write_reg_8(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x10) self.i2c_bus.write_reg_8(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08) self.i2c_bus.write_reg_8(GLOBAL_CONFIG_VCSEL_WIDTH, 0x02) self.i2c_bus.write_reg_8(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C) self.i2c_bus.write_reg_8(0xFF, 0x01) self.i2c_bus.write_reg_8(ALGO_PHASECAL_LIM, 0x30) self.i2c_bus.write_reg_8(0xFF, 0x00) elif period_pclks == 10: self.i2c_bus.write_reg_8(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x28) self.i2c_bus.write_reg_8(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08) self.i2c_bus.write_reg_8(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03) self.i2c_bus.write_reg_8(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09) self.i2c_bus.write_reg_8(0xFF, 0x01) self.i2c_bus.write_reg_8(ALGO_PHASECAL_LIM, 0x20) self.i2c_bus.write_reg_8(0xFF, 0x00) elif period_pclks == 12: self.i2c_bus.write_reg_8(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x38) self.i2c_bus.write_reg_8(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08) self.i2c_bus.write_reg_8(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03) self.i2c_bus.write_reg_8(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08) self.i2c_bus.write_reg_8(0xFF, 0x01) self.i2c_bus.write_reg_8(ALGO_PHASECAL_LIM, 0x20) self.i2c_bus.write_reg_8(0xFF, 0x00) elif period_pclks == 14: self.i2c_bus.write_reg_8(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x48) self.i2c_bus.write_reg_8(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08) self.i2c_bus.write_reg_8(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03) self.i2c_bus.write_reg_8(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07) self.i2c_bus.write_reg_8(0xFF, 0x01) self.i2c_bus.write_reg_8(ALGO_PHASECAL_LIM, 0x20) self.i2c_bus.write_reg_8(0xFF, 0x00) else: # invalid period return False # apply new VCSEL period self.i2c_bus.write_reg_8(FINAL_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg) # update timeouts # set_sequence_step_timeout() begin # (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE) # "For the final range timeout, the pre-range timeout # must be added. To do this both final and pre-range # timeouts must be expressed in macro periods MClks # because they have different vcsel periods." new_final_range_timeout_mclks = self.timeout_microseconds_to_mclks(timeouts["final_range_us"], period_pclks) if enables["pre_range"]: new_final_range_timeout_mclks += timeouts["pre_range_mclks"] self.i2c_bus.write_reg_16(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI, self.encode_timeout(new_final_range_timeout_mclks)) # set_sequence_step_timeout end else: # invalid type return False # "Finally, the timing budget must be re-applied" self.set_measurement_timing_budget(self.measurement_timing_budget_us) # "Perform the phase calibration. This is needed after changing on vcsel period." # VL53L0X_perform_phase_calibration() begin sequence_config = self.i2c_bus.read_8(SYSTEM_SEQUENCE_CONFIG) self.i2c_bus.write_reg_8(SYSTEM_SEQUENCE_CONFIG, 0x02) self.perform_single_ref_calibration(0x0) self.i2c_bus.write_reg_8(SYSTEM_SEQUENCE_CONFIG, sequence_config) # VL53L0X_perform_phase_calibration() end return True # Performs a single-shot range measurement and returns the reading in # millimeters # based on VL53L0X_PerformSingleRangingMeasurement() def read_range_single_millimeters(self): self.i2c_bus.write_reg_8(0x80, 0x01) self.i2c_bus.write_reg_8(0xFF, 0x01) self.i2c_bus.write_reg_8(0x00, 0x00) self.i2c_bus.write_reg_8(0x91, self.stop_variable) self.i2c_bus.write_reg_8(0x00, 0x01) self.i2c_bus.write_reg_8(0xFF, 0x00) self.i2c_bus.write_reg_8(0x80, 0x00) self.i2c_bus.write_reg_8(SYSRANGE_START, 0x01) # "Wait until start bit has been cleared" self.start_timeout() while (self.i2c_bus.read_8(SYSRANGE_START) & 0x01): if self.check_timeout_expired(): self.did_timeout = True raise IOError("read_range_single_millimeters timeout") return self.read_range_continuous_millimeters() # Set the return signal rate limit check value in units of MCPS (mega counts # per second). "This represents the amplitude of the signal reflected from the # target and detected by the device"; setting this limit presumably determines # the minimum measurement necessary for the sensor to report a valid reading. # Setting a lower limit increases the potential range of the sensor but also # seems to increase the likelihood of getting an inaccurate reading because of # unwanted reflections from objects other than the intended target. # Defaults to 0.25 MCPS as initialized by the ST API and this library. def set_signal_rate_limit(self, limit_Mcps): if limit_Mcps < 0 or limit_Mcps > 511.99: raise ValueError("set_signal_rate_limit limit out of range (0 - 511.99)") # Q9.7 fixed point format (9 integer bits, 7 fractional bits) self.i2c_bus.write_reg_16(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT, (limit_Mcps * (1 << 7)))# writeReg16Bit(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT, limit_Mcps * (1 << 7)); # Encode VCSEL pulse period register value from period in PCLKs # based on VL53L0X_encode_vcsel_period() def encode_vcsel_period(self, period_pclks): return((period_pclks >> 1) - 1)