Processing math: 100%
Up 南中の経度計算式 作成: 2020-09-28
更新: 2020-09-28


    問題
    公転角がτのときの,緯度aの南中の経度は?


    「南中の直交座標計算式」で,つぎを得ている: x=acτs1(ns)2(τc)2  そして,「自転軸系経度緯度と公転軸系直交座標の変換式」で,つぎを得ている: x=acbc  よって, bc=τs1(ns)2(τc)2  (bs)2=1(bc)2=1(τs)21(ns)2(τc)2=1(ns)2(τc)2(τs)21(ns)2(τc)2=(τc)2(ns)2(τc)21(ns)2(τc)2=(nc)2(τc)21(ns)2(τc)2  bs>00<b<π のときで,そしてこのときは 1/2π<τ<3/2π であり,τc<0
    よって,つぎのようになる: bs=ncτc1(ns)2(τc)2

    まとめ
    公転角がτのときの,緯度aの南中の経度bは, bc=τs1(ns)2(τc)2 bs=ncτc1(ns)2(τc)2