問題
公転角がτのときの,緯度aの正午の座標 (x, y, z) は?
はじめに,つぎを条件として措くことが必要になる (以下の推論の中でこのことがわかってくる):
\[
a > n \\
a + n < \frac{\pi}{2} \\
\]
簡単のため
\[
n_s = sin(n), \ \ n_c = cos(n) \\
a_s = sin(a), \ \ a_c = cos(a) \\
\tau_s = sin(\tau), \ \ \tau_c = cos(\tau)
\]
とおく。
さらにこの簡略記法
\[
x_s = sin(x) \\
x_c = cos(x)
\]
を,一般のxに対しても用いるとする。
(1) τ= 0, π のとき
(1.1) τ= 0 (夏至) のとき
正午(昼)は
\[
x = 0 \\
y = - (a - n)_c \\
z = (a - n)_s
\]
正午(夜)は,
\[
x = 0 \\
y = (a + n)_c\\
z = (a + n)_s \\
\\
\]
(1.2) τ= π (冬至) のとき
正午(昼)は
\[
x = 0 \\
y = (a + n)_c \\
z = (a + n)_s
\]
正午(夜)は,
\[
x = 0 \\
y = - (a - n)_c\\
z = (a - n)_s \\
\\ \ \\
\]
このとき,
\[
{\bf t} = ( -\tau_c, -\tau_s, 0) \\
{\bf x} \cdot {\bf t} = 0
\]
そしてこれより
\[
\begin{align}
& (x, y, z) \cdot ( -\tau_c, -\tau_s, 0) = 0 \\
\Longrightarrow \
& -\tau_c \ x - \tau_s \ y = 0 \\
\Longrightarrow \
& y = - \frac{\tau_c}{\tau_s} \ x \\
\end{align}
\\
\]
緯度aの点の座標 (x, y, z) では,つぎが必要条件になる ( 自転軸系経度緯度と公転軸系直交座標の変換式):
\[
a_s = -n_s \ y + n_c \ z \\
\]
よって,
\[
\begin{align}
z &= \frac{n_s \ y + a_s}{n_c} \\
&= \frac{- n_s \tau_c \ x + a_s \tau_s}{n_c \tau_s}
\end{align}
\\ \ \\
\]
さらに
\[
\begin{align}
& x^2 + y^2 + z^2 = 1 \\
\Longrightarrow
& x^2
+ (- \frac{\tau_c}{\tau_s} x)^2
+ (\frac{- n_s \tau_c \ x + a_s \tau_s}{n_c \tau_s})^2 = 1 \\
\Longrightarrow
& x^2
+ \frac{(\tau_c)^2}{(\tau_s)^2} \ x^2 \\
& \qquad + \frac{(n_s \ \tau_c)^2 \ x^2 - 2 n_s \ a_s \tau_s \tau_c \ x + (a_s \tau_s)^2}{ (n_c \tau_s)^2} = 1 \\
\ \\
\Longrightarrow
& ( ( n_c \tau_s )^2 + ( n_c \tau_c)^2 + (n_s \ \tau_c)^2 ) \ x^2 \\
& \qquad - 2 ( n_s \ a_s \ \tau_s \ \tau_c ) \ x \\
& \qquad + (a_s \tau_s)^2 = ( n_c \tau_s)^2 \\
\ \\
\Longrightarrow
& ( ( n_c )^2 ( (\tau_s)^2 + (\tau_c)^2) + (n_s)^2 (1 - (\tau_s)^2 ) ) \ x^2 \\
& \qquad - 2 ( n_s \ a_s\ \tau_s \ \tau_c ) \ x \\
& \qquad + (a_s \tau_s)^2 - ( n_c \tau_s)^2 = 0 \\
\ \\
\Longrightarrow
& ( ( n_c )^2 + (n_s)^2 - (n_s \ \tau_s)^2 ) \ x^2 \\
& \qquad - 2 ( n_s \ a_s \ \tau_s \ \tau_c ) \ x \\
& \qquad + ((a_s)^2 - (n_c)^2) (\tau_s)^2 = 0 \\
\ \\
\Longrightarrow
& ( 1 - (n_s \ \tau_s)^2 ) \ x^2 \\
& \qquad - 2 ( n_s \ a_s \ \tau_s \ \tau_c ) \ x \\
& \qquad + ((a_s)^2 - (n_c)^2) (\tau_s)^2 = 0 \\
\ \\
\Longrightarrow
&x = \frac{ a_s \ n_s \ \tau_s \ \tau_c \pm \sqrt{D}}{1 - (n_s)^2 (\tau_s)^2} \\
\ \\
&D = ( n_s a_s \tau_s \tau_c )^2 -
(1 - (n_s)^2 (\tau_s)^2)
(((a_s)^2 - (n_c)^2) (\tau_s)^2) \\
\ \\
&\quad = ( n_s)^2 (a_s)^2 (\tau_c )^2 (\tau_s)^2 - \\
&\quad \quad ( (1 - (n_s)^2 (\tau_s)^2 ) (a_s)^2 - ( 1 - (n_s)^2 (\tau_s)^2 ) (n_c)^2) ) (\tau_s)^2 \\
\ \\
&\quad = ( n_s)^2 (a_s )^2 (\tau_c )^2 (\tau_s)^2 - \\
&\quad \quad ( (a_s)^2 - (n_s)^2 (a_s)^2 (\tau_s)^2
- ( n_c )^2 + (n_s)^2 (\tau_s)^2 (n_c)^2 ) (\tau_s)^2\\
\ \\
&\quad = ( ( n_s)^2 (a_s )^2 (\tau_c )^2 - (a_s)^2 + (n_s)^2 (a_s)^2 (\tau_s)^2
+ ( n_c )^2 - (n_s)^2 (\tau_s)^2 (n_c)^2 ) (\tau_s)^2\\
\ \\
&\quad = ( ( n_c )^2 + ( n_s)^2 (a_s )^2 (\tau_c )^2 + (n_s)^2 (a_s)^2 (\tau_s)^2
- (a_s)^2 - (n_s)^2 (\tau_s)^2 (n_c)^2 ) (\tau_s)^2\\
\ \\
&\quad = ( ( n_c )^2+ ( n_s)^2 (a_s )^2 - (a_s)^2 - (n_s)^2 (\tau_s)^2 (n_c)^2 ) (\tau_s)^2\\
\ \\
&\quad = ( ( n_c )^2 - ( n_c)^2 (a_s)^2 - (n_s)^2 (\tau_s)^2 (n_c)^2 ) (\tau_s)^2\\
\ \\
&\quad = ( 1 - (a_s)^2 - (n_s)^2 (\tau_s)^2 ) (\tau_s)^2\\
\ \\
&\quad = ( (a_c)^2 - (n_s)^2 (\tau_s)^2 ) (n_c)^2 (\tau_s)^2\\
\ \\
\end{align}
\]
はじめに a + n < π/2 を条件として措いたが,このとき
\[
\begin{align}
& a < \frac{\pi}{2} - n \\
\Longrightarrow \ \
& a_c > cos(\frac{\pi}{2} - n) = n_s \\
\Longrightarrow \ \
& D > 0 \\
\end{align}
\]
xが
\[
x =
\frac{ a_s \ n_s \ \tau_s \ \tau_c
\pm n_c \tau_s \sqrt{(a_c)^2 - (n_s)^2 (\tau_s)^2}}{1 - (n_s)^2 (\tau_s)^2}
\]
と確定したところで,
\[
\begin{align}
y & = - \frac{\tau_c}{\tau_s} x
= \frac{ - a_s \ n_s \ (\tau_c)^2
\mp n_c \tau_c \sqrt{(a_c)^2 - (n_s)^2 (\tau_s)^2}}{1 - (n_s)^2 (\tau_s)^2}
\\ \ \\
z & = \frac{n_s \ y + a_s}{n_c}
\\ \ \\
& = \frac{ - a_s \ (n_s)^2 \ (\tau_c)^2
\mp n_s n_c \tau_c \sqrt{(a_c)^2 - (n_s)^2 (\tau_s)^2}
+ a_s (1 - (n_s)^2 (\tau_s)^2) }
{n_c \ (1 - (n_s)^2 (\tau_s)^2)}
\\ \ \\
& = \frac{ - a_s \ (n_s)^2 \ (\tau_c)^2
\mp n_s n_c \tau_c \sqrt{(a_c)^2 - (n_s)^2 (\tau_s)^2}
+ a_s ( 1 - (n_s)^2 (1 - (\tau_c)^2 ) }
{n_c \ (1 - (n_s)^2 (\tau_s)^2)}
\\ \ \\
& = \frac{ - a_s \ (n_s)^2 \ (\tau_c)^2
\mp n_s n_c \tau_c \sqrt{(a_c)^2 - (n_s)^2 (\tau_s)^2}
+ a_s ( 1 - (n_s)^2 + (n_s)^2 (\tau_c)^2 ) }
{n_c \ (1 - (n_s)^2 (\tau_s)^2)}
\\ \ \\
& = \frac{ - a_s \ (n_s)^2 \ (\tau_c)^2
\mp n_s n_c \tau_c \sqrt{(a_c)^2 - (n_s)^2 (\tau_s)^2}
+ a_s (n_c)^2 + a_s (n_s)^2 (\tau_c)^2 }
{n_c \ (1 - (n_s)^2 (\tau_s)^2)}
\\ \ \\
& = \frac{ a_s n_c
\mp n_s \tau_c \sqrt{(a_c)^2 - (n_s)^2 (\tau_s)^2}}
{1 - (n_s)^2 (\tau_s)^2}
\end{align}
\]
まとめ
a < π/2 - n であるaに対し,
正午(昼)
τ= 0 (夏至) のとき
\[
x = 0 \\
y = - (a - n)_c \\
z = (a - n)_s
\]
τ= π (冬至) のとき
\[
x = 0 \\
y = (a + n)_c \\
z = (a + n)_s
\]
τ≠ 0, π のとき
\[
x = \frac{ a_s \ n_s \ \tau_s \ \tau_c
+ n_c \tau_s \sqrt{(a_c)^2 - (n_s)^2 (\tau_s)^2}}{1 - (n_s)^2 (\tau_s)^2} \\
\ \\
y = \frac{ - a_s \ n_s \ (\tau_c)^2
- n_c \tau_c \sqrt{(a_c)^2 - (n_s)^2 (\tau_s)^2}}{1 - (n_s)^2 (\tau_s)^2} \\
\ \\
z = \frac{ a_s n_c - n_s \tau_c \sqrt{(a_c)^2 - (n_s)^2 (\tau_s)^2}} {1 - (n_s)^2 (\tau_s)^2} \\
\]
正午(夜)
τ= 0 (夏至) のとき
\[
x = 0 \\
y = (a + n)_c\\
z = (a + n)_s \\
\\
\]
τ= π (冬至) のとき
\[
x = 0 \\
y = - (a - n)_c\\
z = (a - n)_s \\
\\ \ \\
\]
τ≠ 0, π のとき
\[
x = \frac{ a_s \ n_s \ \tau_s \ \tau_c
- n_c \tau_s \sqrt{(a_c)^2 - (n_s)^2 (\tau_s)^2}}{1 - (n_s)^2 (\tau_s)^2} \\
\ \\
y = \frac{ - a_s \ n_s \ (\tau_c)^2
+ n_c \tau_c \sqrt{(a_c)^2 - (n_s)^2 (\tau_s)^2}}{1 - (n_s)^2 (\tau_s)^2} \\
\ \\
z = \frac{ a_s n_c + n_s \tau_c \sqrt{(a_c)^2 - (n_s)^2 (\tau_s)^2}} {1 - (n_s)^2 (\tau_s)^2} \\
\]
|