| 
\[ \vec{E}  = ( \, - \frac {\partial \phi} {\partial x} , - \frac {\partial \phi}{\partial y} , - \frac {\partial \phi}{\partial z} ) \]
\[ ( \, \vec{E}  = - grad \, \phi = - \nabla \phi \, ) \]
	\( \Longrightarrow \) 場所 \( \vec{x} \) の電荷 \( q \) は,位置エネルギーが (\ q\,φ( \vec{x} ) \)。
 
 
 
 ポアッソン方程式
	\[ \frac {\partial^2 \phi} {\partial x^2} + \frac {\partial^2 \phi}{\partial y^2} + \frac {\partial^2 \phi}{\partial z^2} = - \frac{\rho }{\epsilon_0} \]
	\[ \left( \, \Delta \phi  = - \frac{\rho }{\epsilon_0} \, \right)  \]
	
 |