地球の大気圏の上端で,太陽放射 (電磁波) を観測する。
放射線に対して垂直な面をとり,これの単位面積 \( (m^2) \) を単位時間 (秒) に通過する放射線のエネルギーを測る。(太陽放射のスペクトルを測定し,スペクトルのグラフから放射線のエネルギーの積分計算をする。)
これは,約 \( 1.37 \times 10^3\ Joule \) になる
これを,「太陽定数」と呼ぶ。
太陽放射で大気圏上端面全体が単位時間に受けるエネルギーは,太陽定数に地球の断面積を掛けたものに等しい。
地球の半径 \( R \) は,
\[
2 \pi\ R = 4 \times 10^7 (m)\
\Longrightarrow\
R = \frac{ 2 \times 10^7 }{ \pi }\ (m)
\]
地球の断面積 \( S \) は
\[
S = \pi\ R^2 = \frac{ 4 \times 10^{14} }{ \pi } (m^2)
\]
よって,太陽放射から大気圏上端面全体が受けるエネルギーは
\[
( 1.37 \times 10^3 ) \times S \\
= ( 1.37 \times 10^3 ) \times \frac{ 4 \times 10^{14} }{ \pi }\
= 1.74 \times 10^{17}\ (Joule)
\]
また,これを大気圏上端面の単位面積 \( (m^2) \) あたりに換算すると,表面積は断面積の4倍なので,
\[
( ( 1.37 \times 10^3 ) \times S ) / ( 4 \times S ) \\
\approx 340 (Joule)
\]
|