Up 共変テンソル \( {\nabla}_j \) 作成: 2018-01-09
更新: 2018-03-09


    \( {\nabla}_j a_i({\bf x})\) をつぎのように定義し,これを「共変微分」と呼ぶとした:
      \[ {\nabla}_j a_i({\bf x}) = \frac{\partial a_i({\bf x}) } {\partial X^j} + \sum_k \Gamma^k_{ij}\, a_k({\bf x}) \]
    「共変」の語は,この形式が基底変換に対して共変だということを示していることになる。
    実際,つぎが成り立つ: \[ \begin{align*} \nabla'_j a'_i \ =\ \frac{\partial a'_i}{\partial X'^j} - \sum_k {\it \Gamma}^{\,'k}_{\ ij} a'_k \\ =\ \sum_{k,l} \frac{\partial x^l}{\partial x'^i} \frac{\partial X^k}{\partial X'^j} \nabla_k a_l \end{align*} \] 以下,これの計算過程を示す。


      計算(1) \[ a'_i = \sum_j \frac{\partial x^j}{\partial {x'}^i}\, a_j \]    ( 「共変座標」)


        計算(2) \[ \begin{align*} \frac{\partial a'_i}{\partial X'^j} \ &=\ \frac{\partial }{\partial X'^j} \left( \sum_l \frac{\partial x^l}{\partial x'^i} a_l \right) \\ &= \sum_l \left( \frac{{\partial}^2 {x^l}}{\partial x'^i \partial X'^j} a_l + \frac{\partial x^l}{\partial x'^i} \frac{\partial a_l }{\partial X'^j} \right) \\ &= \sum_l \frac{{\partial}^2 {x^l}}{\partial x'^i \partial X'^j} a_l + \sum_l \frac{\partial x^l}{\partial x'^i} \left(\sum_k \frac{\partial X^k}{\partial X'^j} \frac{\partial a_l}{\partial X^k}\right) \\ &= \sum_l \frac{{\partial}^2 {x^l}}{\partial x'^i \partial X'^j} a_l + \sum_{k,l} \frac{\partial x^l}{\partial x'^i} \frac{\partial X^k}{\partial X'^j} \frac{\partial a_l}{\partial X^k} \\ &= \sum_{k,l} \frac{\partial x^l}{\partial x'^i} \frac{\partial X^k}{\partial X'^j} \frac{\partial a_l}{\partial X^k} +\sum_l \frac{{\partial}^2 {x^l}}{\partial x'^i \partial X'^j} a_l \end{align*} \]

        計算(3) \[ {\it \Gamma}^{\,'k}_{\ ij} = \sum_{s,v,w} \frac{\partial x^s}{\partial {x'}^i } \frac{\partial X^v }{\partial {X'}^j} \frac{\partial {x'}^k}{\partial X^w} \,\Gamma^{w}_{sv} + \sum_{s} \frac{\partial {x'}^k}{\partial x^s} \frac{\partial^2 x^s}{\partial {X'}^j \partial {x'}^i } \] を示す:

        \[ \Gamma^{\,'k}_{ij} = \sum_l \sum_m \frac{\partial^2 {X'}^m}{\partial {x'}^l \partial {x'}^i } \frac{\partial {x'}^l}{\partial {X'}^j} \frac{\partial {x'}^k}{\partial {X'}^m} \] \[ \begin{align*} \frac{\partial^2 {X'}^m}{\partial {x'}^l \partial {x'}^i } &= \frac{\partial}{\partial {x'}^l } \frac{\partial {X'}^m}{\partial {x'}^i } \\&= \sum_u \frac{\partial x^u}{\partial {x'}^l } \frac{\partial}{\partial x^u} \left( \sum_t \frac{\partial X^t}{\partial {x'}^i } \frac{\partial {X'}^m}{\partial {X}^t } \right) \\&= \sum_u \frac{\partial x^u}{\partial {x'}^l } \frac{\partial}{\partial x^u} \left( \sum_t \left( \sum_s \frac{\partial x^s}{\partial {x'}^i } \frac{\partial X^t}{\partial x^s } \right) \frac{\partial {X'}^m}{\partial {X}^t } \right) \\&= \sum_{s,t,u} \frac{\partial x^u}{\partial {x'}^l } \frac{\partial}{\partial x^u} \left( \frac{\partial x^s}{\partial {x'}^i } \frac{\partial X^t}{\partial x^s } \frac{\partial {X'}^m}{\partial {X}^t } \right) \\&= \sum_{s,t,u} \frac{\partial x^u}{\partial {x'}^l } \frac{\partial {X'}^m}{\partial {X}^t } \frac{\partial}{\partial x^u} \left( \frac{\partial X^t}{\partial x^s } \frac{\partial x^s}{\partial {x'}^i } \right) \\&= \sum_{s,t,u} \frac{\partial x^u}{\partial {x'}^l } \frac{\partial {X'}^m}{\partial {X}^t } \left( \frac{\partial^2 X^t}{\partial x^u \partial x^s } \frac{\partial x^s}{\partial {x'}^i } + \frac{\partial X^t}{\partial x^s } \frac{\partial^2 x^s}{\partial x^u \partial {x'}^i } \right) \\&= \sum_{s,t,u} \frac{\partial x^u}{\partial {x'}^l } \frac{\partial {X'}^m}{\partial {X}^t } \frac{\partial^2 X^t}{\partial x^u \partial x^s } \frac{\partial x^s}{\partial {x'}^i } + \sum_{s,t,u} \frac{\partial x^u}{\partial {x'}^l } \frac{\partial {X'}^m}{\partial {X}^t } \frac{\partial X^t}{\partial x^s } \frac{\partial^2 x^s}{\partial x^u \partial {x'}^i } \\&= \sum_{s,t,u} \frac{\partial^2 X^t}{\partial x^u \partial x^s } \frac{\partial x^s}{\partial {x'}^i } \frac{\partial x^u}{\partial {x'}^l } \frac{\partial {X'}^m}{\partial {X}^t } + \sum_{s} \left( \sum_{u} \frac{\partial x^u}{\partial {x'}^l } \frac{\partial}{\partial x^u} \frac{\partial x^s}{\partial {x'}^i } \right) \left( \sum_{t} \frac{\partial X^t}{\partial x^s } \frac{\partial {X'}^m}{\partial {X}^t } \right) \\&= \sum_{s,t,u} \frac{\partial^2 X^t}{\partial x^u \partial x^s } \frac{\partial x^s}{\partial {x'}^i } \frac{\partial x^u}{\partial {x'}^l } \frac{\partial {X'}^m}{\partial {X}^t } + \sum_{s} \frac{\partial^2 x^s}{\partial {x'}^l \partial {x'}^i } \frac{\partial {X'}^m}{\partial x^s } \end{align*} \] \[ \frac{\partial {x'}^l}{\partial {X'}^j} = \sum_v \frac{\partial X^v }{\partial {X'}^j} \frac{\partial {x'}^l}{\partial X^v} \] \[ \frac{\partial {x'}^k}{\partial {X'}^m} = \sum_w \frac{\partial X^w }{\partial {X'}^m} \frac{\partial {x'}^k}{\partial X^w} \]  よって, \[ \Gamma^{\,'k}_{ij} = \sum_l \sum_m \frac{\partial^2 {X'}^m}{\partial {x'}^l \partial {x'}^i } \frac{\partial {x'}^l}{\partial {X'}^j} \frac{\partial {x'}^k}{\partial {X'}^m} \\ \\= \sum_{l,m,s,t,u,v,w} \left( \frac{\partial^2 X^t}{\partial x^u \partial x^s } \frac{\partial x^s}{\partial {x'}^i } \frac{\partial x^u}{\partial {x'}^l } \frac{\partial {X'}^m}{\partial {X}^t } \right) \left( \frac{\partial X^v }{\partial {X'}^j} \frac{\partial {x'}^l}{\partial X^v} \right) \left( \frac{\partial X^w }{\partial {X'}^m} \frac{\partial {x'}^k}{\partial X^w} \right) \\+ \sum_{l,m,s} \left( \frac{\partial^2 x^s}{\partial {x'}^l \partial {x'}^i } \frac{\partial {X'}^m}{\partial x^s } \right) \frac{\partial {x'}^l}{\partial {X'}^j} \frac{\partial {x'}^k}{\partial {X'}^m} \\ \\= \sum_{s,t,u,v,w} \frac{\partial^2 X^t}{\partial x^u \partial x^s } \left( \sum_{l} \frac{\partial x^u}{\partial {x'}^l } \frac{\partial {x'}^l}{\partial X^v} \right) \left( \sum_{m} \frac{\partial X^w }{\partial {X'}^m} \frac{\partial {X'}^m}{\partial {X}^t } \right) \frac{\partial x^s}{\partial {x'}^i } \frac{\partial X^v }{\partial {X'}^j} \frac{\partial {x'}^k}{\partial X^w} \\+ \sum_{s} \left( \sum_{l} \frac{\partial {x'}^l}{\partial {X'}^j} \frac{\partial}{\partial {x'}^l} \frac{\partial x^s}{\partial {x'}^i } \right) \left( \sum_{m} \frac{\partial {X'}^m}{\partial x^s } \frac{\partial {x'}^k}{\partial {X'}^m} \right) \\ \\= \sum_{s,t,u,v,w} \frac{\partial^2 X^t}{\partial x^u \partial x^s } \frac{\partial x^u}{\partial X^v} \frac{\partial X^w }{\partial {X}^t } \frac{\partial x^s}{\partial {x'}^i } \frac{\partial X^v }{\partial {X'}^j} \frac{\partial {x'}^k}{\partial X^w} \\+ \sum_{s} \frac{\partial^2 x^s}{\partial {X'}^j \partial {x'}^i } \frac{\partial {x'}^k}{\partial x^s} \\ \\= \sum_{s,v,w} \left( \sum_{t,u} \frac{\partial^2 X^t}{\partial x^u \partial x^s } \frac{\partial x^u}{\partial X^v} \frac{\partial X^w }{\partial {X}^t } \right) \frac{\partial x^s}{\partial {x'}^i } \frac{\partial X^v }{\partial {X'}^j} \frac{\partial {x'}^k}{\partial X^w} \\+ \sum_{s} \frac{\partial {x'}^k}{\partial x^s} \frac{\partial^2 x^s}{\partial {X'}^j \partial {x'}^i } \\ \\= \sum_{s,v,w} \Gamma^{w}_{sv}\, \frac{\partial x^s}{\partial {x'}^i } \frac{\partial X^v }{\partial {X'}^j} \frac{\partial {x'}^k}{\partial X^w} \\+ \sum_{s} \frac{\partial {x'}^k}{\partial x^s} \frac{\partial^2 x^s}{\partial {X'}^j \partial {x'}^i } \\ \\= \sum_{s,v,w} \frac{\partial x^s}{\partial {x'}^i } \frac{\partial X^v }{\partial {X'}^j} \frac{\partial {x'}^k}{\partial X^w} \,\Gamma^{w}_{sv} + \sum_{s} \frac{\partial {x'}^k}{\partial x^s} \frac{\partial^2 x^s}{\partial {X'}^j \partial {x'}^i } \]

        計算(4)
         計算 (3) と(1) より, \[ \sum_{k} {\it \Gamma}^{\,'k}_{\ ij} a'_k \\= \sum_{k} \left( \sum_{s,v,w} \frac{\partial x^s}{\partial {x'}^i } \frac{\partial X^v }{\partial {X'}^j} \frac{\partial {x'}^k}{\partial X^w} \,\Gamma^{w}_{sv} + \sum_{s} \frac{\partial {x'}^k}{\partial x^s} \frac{\partial^2 x^s}{\partial {X'}^j \partial {x'}^i } \right) \left( \sum_q \frac{\partial x^q}{\partial x'^k} a_q \right) \\ \\= \sum_{s,v,w,q} \left(\sum_{k} \frac{\partial x'^k}{\partial X^w} \frac{\partial x^q}{\partial x'^k}\right) \frac{\partial x^s}{\partial x'^i} \frac{\partial X^v}{\partial X'^j} \Gamma^w_{sw} a_q \ + \sum_{q,s} \left(\sum_{k} \frac{\partial x'^k}{\partial x^s} \frac{\partial x^q}{\partial x'^k}\right) \frac{{\partial}^2 {x^s}}{\partial x'^i \partial X'^j} a_q \\= \sum_{s,v,w,q} \frac{\partial x^q}{\partial X^w} \frac{\partial x^s}{\partial x'^i} \frac{\partial X^v}{\partial X'^j} \Gamma^w_{sw} a_q \ + \sum_{q,s} \frac{\partial x^q}{\partial x^s} \frac{{\partial}^2 {x^s}}{\partial x'^i \partial X'^j} a_q \\= \sum_{s,v,w} \frac{\partial x^s}{\partial x'^i} \frac{\partial X^v}{\partial X'^j} \Gamma^w_{sw} \left( \sum_{q} \frac{\partial x^q}{\partial X^w} a_q \right) + \sum_{s} \frac{{\partial}^2 {x^s}}{\partial x'^i \partial X'^j} \left( \sum_{q} \frac{\partial x^q}{\partial x^s} a_q \right) \\= \sum_{s,v,w} \frac{\partial x^s}{\partial x'^i} \frac{\partial X^v}{\partial X'^j} \Gamma^w_{sw} a_w \ + \sum_{s} \frac{{\partial}^2 {x^s}}{\partial x'^i \partial X'^j} a_s \\= \sum_{s,v} \frac{\partial x^s}{\partial x'^i} \frac{\partial X^v}{\partial X'^j} \left(\sum_{w} \Gamma^w_{sk} a_w \right) + \sum_{s} \frac{{\partial}^2 {x^s}}{\partial x'^i \partial X'^j} a_s \]

        計算(5)
         計算(2) と (4) より, \[ \nabla'_j a'_i \ =\ \frac{\partial a'_i}{\partial X'^j} - \sum_t {\it \Gamma}^{\,'k}_{\ ij} a'_k \\ = \sum_{k,l} \frac{\partial x^l}{\partial x'^i} \frac{\partial X^k}{\partial X'^j} \frac{\partial a_l}{\partial X^k} + \sum_l \frac{{\partial}^2 {x^l}}{\partial x'^i \partial X'^j} a_l \\ \quad \ - \left( \sum_{k,l} \frac{\partial x^l}{\partial x'^i} \frac{\partial X^k}{\partial X'^j} \left(\sum_{p} \Gamma^{p}_{lk} a_p \right) + \sum_{l} \frac{{\partial}^2 {x^l}}{\partial x'^i \partial X'^j} a_l \right) \\= \sum_{k,l} \frac{\partial x^l}{\partial x'^i} \frac{\partial X^k}{\partial X'^j} \left( \frac{\partial a^l}{\partial X^k} \ - \sum_{p} \Gamma^{p}_{lk} a_p \right) \\=\ \sum_{k,l} \frac{\partial x^l}{\partial x'^i} \frac{\partial X^k}{\partial X'^j} \nabla_k a_l \]