Up 緯度a経度bの点で見る<太陽の方角> 作成: 2020-09-25
更新: 2020-09-27


    「太陽の方角」で,太陽方角ベクトル \( {\bf d} \) を求めた: \[ \begin{align} {\bf d} &= ( \ \tau_s ( y^2 + z^2 ) + \tau_c ( x y ), \\ &\ - \tau_s ( x y ) - \tau_c ( z^2 + x^2 ), \\ &\ - \tau_s ( z x ) + \tau_c ( y z ) ) \\ \ \\ | {\bf d} | &= \sqrt { 1 - ( \tau_s \ x - \tau_c \ y )^2 } \end{align} \\ \] 「自転軸系経度緯度と公転軸系直交座標の変換式」から, \[ x = a_c b_c \\ y = n_c a_c b_s - n_s a_s \\ z = n_s a_c b_s + n_c a_s \\ \] 以上を合わせて: \[ \begin{align} & \tau_s ( y^2 + z^2 ) + \tau_c ( x y ) \\ & = \tau_s (1 - x^2 )+ \tau_c ( x y ) \\ & = \tau_s - \tau_s ( a_c b_c )^2 + \tau_c ( a_c b_c )( n_c a_c b_s - n_s a_s ) \\ & = \tau_s - \tau_s (a_c)^2 (b_c)^2 + \tau_c a_c b_c n_c a_c b_s - \tau_c a_c b_c n_s a_s \\ \ \\ & = \tau_s - \tau_s (a_c)^2 (b_c)^2 \\ & + \tau_c n_c (a_c)^2 b_s b_c \\ & - \tau_c n_s a_s a_c b_c \\ \ \\ & - \tau_s ( x y ) - \tau_c ( z^2 + x^2 ) \\ &= - \tau_s ( x y ) - \tau_c ( 1 - y^2 ) \\ &= - \tau_s (a_c b_c) (n_c a_c b_s - n_s a_s) - \tau_c + \tau_c (n_c a_c b_s - n_s a_s)^2 \\ &= - \tau_s a_c b_c n_c a_c b_s + \tau_s a_c b_c n_s a_s \\ & - \tau_c + \tau_c ( (n_c)^2 (a_c)^2 (b_s)^2 - 2 n_c a_c b_s n_s a_s + (n_s)^2 (a_s)^2 ) \\ &= - \tau_s n_c (a_c)^2 b_s b_c + \tau_s n_s a_s a_c b_c \\ & - \tau_c + \tau_c (n_c)^2 (a_c)^2 (b_s)^2 - 2 \tau_c n_s n_c a_s a_c b_s + \tau_c (n_s)^2 (a_s)^2 \\ \ \\ &= \tau_c (n_c)^2 (a_c)^2 (b_s)^2 \\ &- \tau_s n_c (a_c)^2 b_s b_c \\ & - 2 \tau_c n_s n_c a_s a_c b_s \\ &+ \tau_s n_s a_s a_c b_c \\ &+ \tau_c (n_s)^2 (a_s)^2 - \tau_c \\ \ \\ & - \tau_s ( z x ) + \tau_c ( y z ) \\ \ \\ & = - \tau_s (n_s a_c b_s + n_c a_s) (a_c b_c) \\ & \quad + \tau_c (n_c a_c b_s - n_s a_s) (n_s a_c b_s + n_c a_s) \\ \ \\ & = - \tau_s (n_s a_c b_s a_c b_c + n_c a_s a_c b_c) \\ & \quad + \tau_c ( n_c a_c b_s n_s a_c b_s + n_c a_c b_s n_c a_s - n_s a_s n_s a_c b_s - n_s a_s n_c a_s) \\ \ \\ & = - \tau_s (n_s a_c^2 b_s b_c + n_c a_s a_c b_c) \\ & \quad + \tau_c (n_s n_c a_c^2 b_s^2 + n_c^2 a_s a_c b_s - n_s^2 a_s a_c b_s - n_s n_c a_s^2 ) \\ \ \\ & = - \tau_s n_s a_c^2 b_s b_c \\ & \quad - \tau_s n_c a_s a_c b_c \\ & \quad + \tau_c n_s n_c a_c^2 b_s^2 \\ & \quad + \tau_c n_c^2 a_s a_c b_s \\ & \quad - \tau_c n_s^2 a_s a_c b_s \\ & \quad - \tau_c n_s n_c a_s^2 \\ \ \\ & = \tau_c n_s n_c a_c^2 b_s^2 \\ & \quad - \tau_s n_s a_c^2 b_s b_c \\ & \quad + \tau_c ( n_c^2 - n_s^2 ) a_s a_c b_s \\ & \quad - \tau_s n_c a_s a_c b_c \\ & \quad - \tau_c n_s n_c a_s^2 \end{align} \\ \ \\ \] \[ \begin{align} | {\bf d} | &= \sqrt { 1 - ( \tau_s \ x - \tau_c \ y )^2 } \\ &= \sqrt { 1 - ( \tau_s \ ( a_c b_c ) - \tau_c \ ( n_c a_c b_s - n_s a_s ) )^2 } \\ \ \\ &1 - ( \tau_s \ ( a_c b_c ) - \tau_c \ ( n_c a_c b_s - n_s a_s ) )^2 \\ \ \\ &= 1 - ( (\tau_s )^2 (a_c )^2 (b_c)^2 \\ & - 2 \tau_s a_c b_c \tau_c ( n_c a_c b_s - n_s a_s) \\ & + (\tau_c)^2 (\ n_c a_c b_s - n_s a_s )^2 ) \\ \ \\ &= - (a_c)^2 (\tau_s )^2 (b_c)^2 \\ & + 2 n_c (a_c)^2 \tau_s \tau_c b_s b_c \\ & - 2 n_s a_s a_c \tau_s \tau_c b_c \\ & - (\tau_c)^2 (\ (n_c)^2 (a_c)^2 (b_s)^2 - 2 n_c a_c b_s n_s a_s + (n_s)^2 (a_s)^2 ) + 1 \\ \ \\ &= - (n_c)^2 (a_c)^2 (\tau_c)^2 (b_s)^2 \\ & - (a_c)^2 (\tau_s )^2 (b_c)^2 \\ & + 2 n_c (a_c)^2 \tau_s \tau_c b_s b_c \\ & + 2 n_c n_s a_s a_c (\tau_c)^2 b_s \\ & - 2 n_s a_s a_c \tau_s \tau_c b_c \\ & - (n_s)^2 (a_s)^2 (\tau_c)^2 +1 \\ \ \\ &= - (a_c)^2 ( (n_c)^2 (\tau_c)^2 (b_s)^2 + (\tau_s )^2 (b_c)^2 - 2 n_c \tau_s \tau_c b_s b_c ) \\ & + 2 n_c n_s a_s a_c (\tau_c)^2 b_s \\ & - 2 n_s a_s a_c \tau_s \tau_c b_c \\ & - (n_s)^2 (a_s)^2 (\tau_c)^2 +1 \\ \ \\ &= - (a_c)^2 ( n_c \tau_c b_s - \tau_s b_c )^2 \\ & + 2 n_s a_s a_c \tau_c ( n_c \tau_c b_s - \tau_s b_c ) \\ & - (n_s)^2 (a_s)^2 (\tau_c)^2 +1 \\ \ \\ &= - ( a_c ( n_c \tau_c b_s - \tau_s b_c ) - n_s a_s \tau_c )^2 + (n_s)^2 (a_s)^2 (\tau_c )^2\\ & - (n_s)^2 (a_s)^2 (\tau_c)^2 +1 \\ \ \\ &=1 - ( a_c ( n_c \tau_c b_s - \tau_s b_c ) - n_s a_s \tau_c )^2 \\ \ \\ \end{align} \]

    まとめ
    公転角度τ,緯度a,経度bでは,つぎのベクトル \( {\bf d} = ( d_x, d_y, d_y ) \) が太陽方角ベクトルになる: \[ \begin{align} d_x &= - \tau_s (a_c)^2 (b_c)^2 \\ & + \tau_c n_c (a_c)^2 b_s b_c \\ & - \tau_c n_s a_s a_c b_c + \tau_s \\ \ \\ d_y &= \tau_c (n_c)^2 (a_c)^2 (b_s)^2 \\ &- \tau_s n_c (a_c)^2 b_s b_c \\ & - 2 \tau_c n_s n_c a_s a_c b_s \\ &+ \tau_s n_s a_s a_c b_c \\ &+ \tau_c (n_s)^2 (a_s)^2 - \tau_c \\ \ \\ d_z &= \tau_c n_s n_c a_c^2 b_s^2 \\ & \quad - \tau_s n_s a_c^2 b_s b_c \\ & \quad + \tau_c ( n_c^2 - n_s^2 ) a_s a_c b_s \\ & \quad - \tau_s n_c a_s a_c b_c \\ & \quad - \tau_c n_s n_c a_s^2 \\ \ \\ | {\bf d} | &= \sqrt { 1 - ( a_c ( n_c \tau_c b_s - \tau_s b_c ) - n_s a_s \tau_c )^2 } \end{align} \\ \ \\ \]

    例:秋分 ( τ=π/2 ) の場合
    \( \tau_s =1, \ \tau_c =0 \) なので, \[ d_x = - a_c^2 b_c^2 + 1 \\ d_y = -n_c a_c^2 b_s b_c + n_s a_s a_c b_c \\ d_z = n_s a_c^2 b_s b_c - n_c a_s a_c b_c \\ | {\bf d} | = \sqrt { 1 - ( a_c ( - b_c ) )^2 } \\ \quad = \sqrt { 1 - ( a_c)^2 (b_c)^2 } \\ \] 南中は \( b_c = 1, b_s = 0 \) のときで,このとき \[ d_x = - a_c^2 + 1 = a_s^2 \\ d_y = n_s a_s a_c \\ d_z = - n_c a_s a_c \\ | {\bf d} | = \sqrt { 1 - (a_c)^2 } = a_s \\ \]
      検算 \[ |{\bf d}| = \sqrt{ (a_s^2)^2 + (n_s a_s a_c)^2 + (- n_c a_s a_c)^2 } \\ \quad = a_s \sqrt{ a_s^2 + n_s^2 a_c^2 + n_c^2 a_c^2 } \\ \quad = a_s \sqrt{ a_s^2 + a_c^2 } \\ \quad = a_s \\ \]
    \( {\bf d} \) を単位ベクトル化すると: \[ {\bf d}_u = ( a_s, - n_s a_c, n_c a_c ) \] この方角での太陽の仰角をβとすると, \[ \begin{align} & \beta_c = {\bf d}_u \cdot {\bf s} \\ & \quad = ( a_s, - n_s a_c, n_c a_c ) \cdot ( \tau_s, -\tau_c , 0 ) \\ & \quad = ( a_s, - n_s a_c, n_c a_c ) \cdot ( 1, 0, 0 ) \\ & \quad = a_s \\ \ \\ \Longrightarrow & \ \ \beta = \frac{\pi}{2} - a \end{align} \]


"; ?>